导数+不等式+原函数极值点化为导函数零点构造等式

已知函数(f(x)=alnx+frac{a-1}{x}-x),其中(a<2)

((1))讨论(f(x))的极值

((2))(min Z),当(a=1)时,若关于(x)的不等式(f(x)<m-(x-2)e^x)在区间((0,1])上恒成立,求(m)的最小值

解:

((1))

[f'(x)=frac{a}{x}-frac{a-1}{x^2}-1=-frac{(x-1)[x-(a-1)]}{x^2} ]

(a-1le 0)时,即(ale 1)

(f(x))(x=1)处取得极大值(f(1)=a-2),无极小值

(0<a-1<1)时,即(1<a<2)

(f(x))(x=a-1)处取得极小值(f(a-1)=aln(a-1)-a+2),在(x=1)取取得极大值(f(1)=a-2)

((2))

(a=1)

[f(x)=lnx-x ]

[f'(x)=frac{1}{x}-1 ]

[f(x)<m-(x-2)e^x ]

[m>lnx-x+(x-2)e^x ]

(h(x)=lnx-x+(x-2)e^x,xin (0,1])

[h'(x)=(x-1)(e^x-frac{1}{x}) ]

(xin (0,1])

[(x-1)le 0 ]

(d(x)=e^x-frac{1}{x})

[d'(x)=e^x+frac{1}{x^2}>0 ]

所以(d(x))((0,1])上递增

[d(frac{1}{2})=sqrt{e}-2<0,d(1)=e-1>0 ]

所以存在(x_0in (frac{1}{2},1))使得(d(x_0)=0)

[d(x_0)=0 ]

[e^{x_0}=frac{1}{x_0} ]

[lnx_0=-x_0 ]

[h(x)_{max}=h(x_0)=(x_0-2)e^{x_0}+lnx_0-x_0 ]

[=(x_0-2)*frac{1}{x_0}-2x_0 ]

[=1-(frac{2}{x_0}+2x_0) ]

函数(u(x)=1-(frac{2}{x}+2x))((frac{1}{2},1))单调增

所以(h(x_0)in (-4,-3))

所以(m)最小值是(-3)

原文地址:https://www.cnblogs.com/knife-rose/p/13294365.html