单位根反演

单位根反演

式子

[[n|k]=dfrac 1 n sumlimits_{i=0}^{n-1}omega^{ik}_n ]

证明有亿丶简单,这里就不放了

应用

((1))

对于 ([a=bpmod n]) 这个东西,我们可以发现就是在问你 (a)(b) 是否模 (n) 同余

所以

[[a=bpmod n]Rightarrow[n|(a-b)] ]

于是就可以直接算了

[[n|(a-b)]=dfrac 1 nsumlimits_{i=0}^{n-1}omega_{n}^{ia-ib} ]

LOJ6485. LJJ 学二项式定理

傻逼题

[egin{align*} dfrac 1 4sumlimits_{i=0}^ninom{n}{i}s^isumlimits_{j=0}^3[4|(i-j)]a_j&= dfrac 1 4sumlimits_{i=0}^ninom{n}{i}s^isumlimits_{j=0}^3a_jsumlimits_{k=0}^3w^{ik}_4w^{-jk}_4 \ &=dfrac 1 4sumlimits_{i=0}^nsumlimits_{j=0}^3sumlimits_{k=0}^3inom n is^ia_jw^{ik}_4w^{-jk}_4 \ &=dfrac 1 4sumlimits_{j=0}^3a_jsumlimits_{k=0}^3w^{-jk}_4(sw^k_4+1)^n end{align*} ]

P5591 小猪佩奇学数学

不难题

以下设 (m=998244353)

[egin{align*} sumlimits_{i=0}^np^iinom n ileftlfloordfrac i k ight floor&=dfrac 1 k sumlimits_{i=0}^np^iinom n i(i-imod m) \ &=dfrac 1 ksumlimits_{i=0}^np^iinom n ii-sumlimits_{i=0}^np^iinom n iimod m \ &=dfrac 1 knp(p+1)^{n-1}-sumlimits_{i=0}^np^iinom n isumlimits_{j=0}^{k-1}j[imod k=j] end{align*} ]

我们对式子的右面进行讨论

[egin{align*} sumlimits_{i=0}^np^iinom n isumlimits_{j=0}^{k-1}j[imod k=j]&=dfrac 1 ksumlimits_{i=0}^np^iinom n isumlimits_{j=0}^{k-1}jsumlimits_{q=0}^{k-1}w^{iq}_kw^{-jq}_k \ &=dfrac 1 ksumlimits_{j=0}^{k-1}jsumlimits_{q=0}^{k-1}w^{-jq}_k(pw^q_k+1)^n ag{1} \ &=dfrac 1 ksumlimits_{q=0}^{k-1}(pw^q_k+1)^nsumlimits_{j=0}^{k-1}jw^{-jq}_k end{align*} ]

笔者推式子到 ((1)) 处时,以为本题已经结束了,但是随后发现直接计算是 (O(k^2))

于是将杂项划到一起,发现这个东西有很强的性质

我们用一个直观的形式做扰动

于是设:

[S_n=sumlimits_{i=0}^{n-1}ix^i ]

此时就有:

[egin{align*} S_n+nx^n&=xsumlimits_{i=1}^nix^{i-1} \ &=xsumlimits_{i=1}^n(i+1)x^i \ &=xS_n+xdfrac{1-x^n}{1-x} \ 1-x&=dfrac{xfrac{1-x^n}{1-x}-nx^n}{1-x} \ S_n&=xfrac{1-x^n}{(1-x)^2}-dfrac{nx^n}{1-x} end{align*} ]

(x=1) 时就有 (S_n=dfrac{n(n-1)}{2})

于是就可以直接做了

[sumlimits_{q=0}^{k-1}(pw^q_k+1)^nsumlimits_{j=0}^{k-1}jw^{-jq}_k= egin{cases} sumlimits_{q=0}^{k-1}frac{k}{w_{k}^{k-q}-1}(pw^q_k+1)^n&x e 1 \ sumlimits_{q=0}^{k-1}frac{k(k-1)}2(pw^q_k+1)^n&x=1 end{cases} ]

原文地址:https://www.cnblogs.com/zythonc/p/14802181.html