hdu-5780 gcd(数学)

题目链接:

gcd

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 131072/131072 K (Java/Others)


Problem Description
 
Little White learned the greatest common divisor, so she plan to solve a problem: given x, n,
query ∑gcd(xa1,xb1) (1a,bn)
 
Input
 
The first line of input is an integer T ( 1T300)
For each test case ,the single line contains two integers x and n ( 1x,n1000000)
 
Output
 
For each testcase, output a line, the answer mod 1000000007
 
Sample Input
 
5
3 1
4 2
8 7
10 5
10 8
 
Sample Output
 
2
24
2398375
111465
111134466
 
题意:
 
求这个式子的值;
 
思路:
 
完全懵逼;看了题解才知道gcd(xa-1,xb-1)=xgcd(a,b)-1;好像以前在哪看过这个式子;
然后就变成了喜闻乐见的求和式子了.∑∑xgcd(a,b)-1;跟欧拉函数联系起来啦num[i]={gcd(a,b)==i的对数1<=a,b<=n}={gcd(a,b)==1的对数1<=a,b<=n/i}
欧拉函数啊;num[i]=2*{phi[1]+phi[2]+...+phi[n/i]}-1;这就是求∑num[i]*(xi-1)的和;再遍历一遍求答案还会超时;题解说要按n/i的值分成等比数列再求;就像那个约瑟夫变形问题按商分成求等差数列和一样;那就分层求好了,快速幂求逆,注意x==1的情况,最最重要的是要得到第一个那个公式;
 
AC代码:
 
/************************************************ 
┆  ┏┓   ┏┓ ┆    
┆┏┛┻━━━┛┻┓ ┆ 
┆┃       ┃ ┆ 
┆┃   ━   ┃ ┆ 
┆┃ ┳┛ ┗┳ ┃ ┆ 
┆┃       ┃ ┆  
┆┃   ┻   ┃ ┆ 
┆┗━┓    ┏━┛ ┆ 
┆  ┃    ┃  ┆       
┆  ┃    ┗━━━┓ ┆ 
┆  ┃  AC代马   ┣┓┆ 
┆  ┃           ┏┛┆ 
┆  ┗┓┓┏━┳┓┏┛ ┆ 
┆   ┃┫┫ ┃┫┫ ┆ 
┆   ┗┻┛ ┗┻┛ ┆       
************************************************ */  


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>

using namespace std;

#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));

typedef  long long LL;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
    if(!p) { puts("0"); return; }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + '0');
    putchar('
');
}

const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e6+10;
const int maxn=1e5+4;
const double eps=1e-8;

int phi[N];
LL sum[N];

inline void Init()
{
    phi[1]=1;
    sum[1]=1;
    For(i,2,N-1)
    {
        if(!phi[i])
        {
            for(int j=i;j<N;j+=i)
            {
                if(!phi[j])phi[j]=j;
                phi[j]=phi[j]/i*(i-1);
            }
        }
        sum[i]=sum[i-1]+phi[i];
    }
}
LL pow_mod(LL x,int y)
{
    LL s=1,base=x;
    while(y)
    {
        if(y&1)s=s*base%mod;
        base=base*base%mod;
        y>>=1;
    }
    return s;
}

int main()
{       
        Init();
        int t,n;
        LL x;
        read(t);
        while(t--)
        {
            read(x);read(n);
            LL ans=0;
            if(x==1)cout<<"0
";
            else 
            {
                LL temp=pow_mod(x-1,(int)mod-2);
                int l=1,r;
                while(l<=n)
                {
                    r=n/(n/l);
                    LL g=((pow_mod(x,r+1)-pow_mod(x,l)+mod)*temp-(r-l+1)+mod)%mod;
                    ans=(ans+(2*sum[n/l]-1)%mod*g)%mod;
                    l=r+1;
                }
                cout<<ans<<"
";

            }
            
        }
        return 0;
}

  

 
原文地址:https://www.cnblogs.com/zhangchengc919/p/5723364.html