二叉树

1.为什么需要树这种数据结构

1)数组存储方式的分析

   优点:通过小标方式访问元素,速度快。对于有序数组,还可以使用二分查找提高检索速度。

   缺点:如果要检索具体某个值,或者插入值(按一定循序)会整体移动,效率较低

2)链式存储方式的分析:

   优点: 在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可,删除效率也很好)。

   缺点:在进行检索时,效率仍然很低,比如(检索某个值,需要从头节点开始遍历)

3)树存储方式的分析

 能提高数据存储,读取的效率,比如利用二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。

2.二叉树

 2.1 二叉树的概念

  1)树有很多种,每一个节点只能有两个子节点的一种形式称为二叉树。

  2)二叉树的子节点分为左节点和右节点

  3)如果该二叉树的所有叶子节点都在最后一层,并且节点总数=2^n-1,n为层数,则我们称为满二叉树。

  4)如果该二叉树的所有叶子结点都在最后一层或者倒数第二层,而且最后一层的叶子结点在左边连续,倒数第二层的叶子结点在右边连续,我们称为完全二叉树。

2.2 二叉树的遍历说明

  前序遍历:先输出父节点,在遍历左子树和右子树

 中序遍历:先遍历左子树,在输出父节点,在遍历右子树

 后序遍历:先遍历左子树,在遍历右子树,最后输出父节点

 小结:看输出父节点的顺序,就确定是前序,中序,还是后序

3. 二叉树-查找指定节点

要求:

1)请编写前序查找,中序查找和后序查找的方法。

2)并分别使用三种查找方式,查找heroNo=5的节点。

3)并分析各种查找方式,分别比较了多少次

4.二叉树-删除节点

要求:

1)如果删除的节点是叶子结点,则删除该节点

2)如果删除的节点是非叶子结点,则删除该子树

3)测试,删除掉5号叶子结点和3号子树

代码实现:

public class BinaryTreeDemo {

    public static void main(String[] args) {
        //先需要创建一颗二叉树
        BinaryTree binaryTree = new BinaryTree();
        //创建需要的结点
        HeroNode root = new HeroNode(1, "宋江");
        HeroNode node2 = new HeroNode(2, "吴用");
        HeroNode node3 = new HeroNode(3, "卢俊义");
        HeroNode node4 = new HeroNode(4, "林冲");
        HeroNode node5 = new HeroNode(5, "关胜");
        
        //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
        root.setLeft(node2);
        root.setRight(node3);
        node3.setRight(node4);
        node3.setLeft(node5);
        binaryTree.setRoot(root);
        
        //测试
//        System.out.println("前序遍历"); // 1,2,3,5,4
//        binaryTree.preOrder();
        
        //测试 
//        System.out.println("中序遍历");
//        binaryTree.infixOrder(); // 2,1,5,3,4
//        
//        System.out.println("后序遍历");
//        binaryTree.postOrder(); // 2,5,4,3,1
        
        //前序遍历
        //前序遍历的次数 :4 
//        System.out.println("前序遍历方式~~~");
//        HeroNode resNode = binaryTree.preOrderSearch(5);
//        if (resNode != null) {
//            System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
//        } else {
//            System.out.printf("没有找到 no = %d 的英雄", 5);
//        }
        
        //中序遍历查找
        //中序遍历3次
//        System.out.println("中序遍历方式~~~");
//        HeroNode resNode = binaryTree.infixOrderSearch(5);
//        if (resNode != null) {
//            System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
//        } else {
//            System.out.printf("没有找到 no = %d 的英雄", 5);
//        }
        
        //后序遍历查找
        //后序遍历查找的次数  2次
//        System.out.println("后序遍历方式~~~");
//        HeroNode resNode = binaryTree.postOrderSearch(5);
//        if (resNode != null) {
//            System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
//        } else {
//            System.out.printf("没有找到 no = %d 的英雄", 5);
//        }
        
        //测试一把删除结点
        
        System.out.println("删除前,前序遍历");
        binaryTree.preOrder(); //  1,2,3,5,4
        binaryTree.delNode(5);
        //binaryTree.delNode(3);
        System.out.println("删除后,前序遍历");
        binaryTree.preOrder(); // 1,2,3,4
        
        
        
    }

}

//定义BinaryTree 二叉树
class BinaryTree {
    private HeroNode root;

    public void setRoot(HeroNode root) {
        this.root = root;
    }
    
    //删除结点
    public void delNode(int no) {
        if(root != null) {
            //如果只有一个root结点, 这里立即判断root是不是就是要删除结点
            if(root.getNo() == no) {
                root = null;
            } else {
                //递归删除
                root.delNode(no);
            }
        }else{
            System.out.println("空树,不能删除~");
        }
    }
    //前序遍历
    public void preOrder() {
        if(this.root != null) {
            this.root.preOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    
    //中序遍历
    public void infixOrder() {
        if(this.root != null) {
            this.root.infixOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //后序遍历
    public void postOrder() {
        if(this.root != null) {
            this.root.postOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    
    //前序遍历
    public HeroNode preOrderSearch(int no) {
        if(root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }
    //中序遍历
    public HeroNode infixOrderSearch(int no) {
        if(root != null) {
            return root.infixOrderSearch(no);
        }else {
            return null;
        }
    }
    //后序遍历
    public HeroNode postOrderSearch(int no) {
        if(root != null) {
            return this.root.postOrderSearch(no);
        }else {
            return null;
        }
    }
}

//先创建HeroNode 结点
class HeroNode {
    private int no;
    private String name;
    private HeroNode left; //默认null
    private HeroNode right; //默认null
    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
    public int getNo() {
        return no;
    }
    public void setNo(int no) {
        this.no = no;
    }
    public String getName() {
        return name;
    }
    public void setName(String name) {
        this.name = name;
    }
    public HeroNode getLeft() {
        return left;
    }
    public void setLeft(HeroNode left) {
        this.left = left;
    }
    public HeroNode getRight() {
        return right;
    }
    public void setRight(HeroNode right) {
        this.right = right;
    }
    @Override
    public String toString() {
        return "HeroNode [no=" + no + ", name=" + name + "]";
    }
    
    //递归删除结点
    //1.如果删除的节点是叶子节点,则删除该节点
    //2.如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no) {
        
        //思路
        /*
         *     1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
            2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
            3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
            4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
            5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.

         */
        //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
        if(this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
        if(this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        //4.我们就需要向左子树进行递归删除
        if(this.left != null) {
            this.left.delNode(no);
        }
        //5.则应当向右子树进行递归删除
        if(this.right != null) {
            this.right.delNode(no);
        }
    }
    
    //编写前序遍历的方法
    public void preOrder() {
        System.out.println(this); //先输出父结点
        //递归向左子树前序遍历
        if(this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null) {
            this.right.preOrder();
        }
    }
    //中序遍历
    public void infixOrder() {
        
        //递归向左子树中序遍历
        if(this.left != null) {
            this.left.infixOrder();
        }
        //输出父结点
        System.out.println(this);
        //递归向右子树中序遍历
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
    //后序遍历
    public void postOrder() {
        if(this.left != null) {
            this.left.postOrder();
        }
        if(this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }
    
    //前序遍历查找
    /**
     * 
     * @param no 查找no
     * @return 如果找到就返回该Node ,如果没有找到返回 null
     */
    public HeroNode preOrderSearch(int no) {
        System.out.println("进入前序遍历");
        //比较当前结点是不是
        if(this.no == no) {
            return this;
        }
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if(this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if(resNode != null) {//说明我们左子树找到
            return resNode;
        }
        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if(this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }
    
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
        HeroNode resNode = null;
        if(this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if(resNode != null) {
            return resNode;
        }
        System.out.println("进入中序查找");
        //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
        if(this.no == no) {
            return this;
        }
        //否则继续进行右递归的中序查找
        if(this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
        
    }
    
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        
        //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
        HeroNode resNode = null;
        if(this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if(resNode != null) {//说明在左子树找到
            return resNode;
        }
        
        //如果左子树没有找到,则向右子树递归进行后序遍历查找
        if(this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if(resNode != null) {
            return resNode;
        }
        System.out.println("进入后序查找");
        //如果左右子树都没有找到,就比较当前结点是不是
        if(this.no == no) {
            return this;
        }
        return resNode;
    }
    
}
原文地址:https://www.cnblogs.com/yangzhixue/p/12241650.html