Modular Multiplicative Inverse(模乘逆元)

计算模乘逆元原理上有四种方法:

1.暴力算法

2.扩展欧几里得算法

3.费尔马小定理

4.欧拉定理

模乘逆元定义:满足 ab≡1(mod m),称b为a模乘逆元。以下是有关概念以及四种方法及程序。

文章出处:Modular Multiplicative Inverse

The modular multiplicative inverse of an integer a modulo m is an integer x such thata^{-1} equiv x pmod{m}.

That is, it is the multiplicative inverse in the ring of integers modulo m. This is equivalent toax equiv aa^{-1} equiv 1 pmod{m}.

1. Brute Force
We can calculate the inverse using a brute force approach where we multiply a with all possible valuesx and find ax such thatax equiv 1 pmod{m}. Here’s a sample C++ code:

int modInverse(int a, int m) {
    a %= m;
    for(int x = 1; x < m; x++) {
        if((a*x) % m == 1) return x;
    }
}

2. Using Extended Euclidean Algorithm
We have to find a number x such that a·x = 1 (mod m). This can be written as well as a·x = 1 + m·y, which rearranges into a·x – m·y = 1. Since x and y need not be positive, we can write it as well in the standard form, a·x + m·y = 1.

Iterative Method

/* This function return the gcd of a and b followed by
    the pair x and y of equation ax + by = gcd(a,b)*/
pair<int, pair<int, int> > extendedEuclid(int a, int b) {
    int x = 1, y = 0;
    int xLast = 0, yLast = 1;
    int q, r, m, n;
    while(a != 0) {
        q = b / a;
        r = b % a;
        m = xLast - q * x;
        n = yLast - q * y;
        xLast = x, yLast = y;
        x = m, y = n;
        b = a, a = r;
    }
    return make_pair(b, make_pair(xLast, yLast));
}
 
int modInverse(int a, int m) {
    return (extendedEuclid(a,m).second.first + m) % m;
}

Recursive Method

/* This function return the gcd of a and b followed by
    the pair x and y of equation ax + by = gcd(a,b)*/
pair<int, pair<int, int> > extendedEuclid(int a, int b) {
    if(a == 0) return make_pair(b, make_pair(0, 1));
    pair<int, pair<int, int> > p;
    p = extendedEuclid(b % a, a);
    return make_pair(p.first, make_pair(p.second.second - p.second.first*(b/a), p.second.first));
}
 
int modInverse(int a, int m) {
    return (extendedEuclid(a,m).second.first + m) % m;
}

3. Using Fermat’s Little Theorem
Fermat’s little theorem states that if m is a prime and a is an integer co-prime to m, thenap − 1 will be evenly divisible by m. That isa^{m-1} equiv 1 pmod{m}. ora^{m-2} equiv a^{-1} pmod{m}. Here’s a sample C++ code:

/* This function calculates (a^b)%MOD */
int pow(int a, int b, int MOD) {
int x = 1, y = a;
    while(b > 0) {
        if(b%2 == 1) {
            x=(x*y);
            if(x>MOD) x%=MOD;
        }
        y = (y*y);
        if(y>MOD) y%=MOD;
        b /= 2;
    }
    return x;
}
 
int modInverse(int a, int m) {
    return pow(a,m-2,m);
}

4. Using Euler’s Theorem
Fermat’s Little theorem can only be used if m is a prime. If m is not a prime we can use Euler’s Theorem, which is a generalization of Fermat’s Little theorem. According to Euler’s theorem, if a is coprime to m, that is, gcd(a, m) = 1, thena^{varphi(m)} equiv 1 pmod{m}, where where φ(m) is Euler Totient Function. Therefore the modular multiplicative inverse can be found directly:a^{varphi(m)-1} equiv a^{-1} pmod{m}. The problem here is finding φ(m). If we know φ(m), then it is very similar to above method.

vector<int> inverseArray(int n, int m) {
    vector<int> modInverse(n + 1,0);
    modInverse[1] = 1;
    for(int i = 2; i <= n; i++) {
        modInverse[i] = (-(m/i) * modInverse[m % i]) % m + m;
    }
    return modInverse;
}





原文地址:https://www.cnblogs.com/tigerisland/p/7564860.html