(转)CortexM3 (NXP LPC1788)之RTC

实时时钟是一组用于测量时间的计数器,如果使用电池供电,在系统掉电以后它也可以正常运行以记录系统的时间。LPC1788时钟采用内部的32K振荡器输出1HZ的时钟信号做为RTC的时钟源。

    RTC的寄存器比较简单,主要有时钟计数器寄存器包括秒SEC 分MIN 小时HOUR  日期(月)DOM 星期DOW 日期(年)DOY 月MONTH 年YEAR, 这些寄存器为R/W 可以从中读出具体的时间信息。其中的秒计数由1HZ时钟驱动。报警寄存器组中的值将和时间计数器寄存器中的值比较,如果所有为屏蔽的报警寄存器都与他们对应的时间计数器相匹配,那么将产生一次中断。报警屏蔽在报警屏蔽寄存器AMR中设置。中断设置在中断位置寄存器ILR中设置。RTC中断不仅可以在报警寄存器和时间计数器匹配时产生,我们也可以配置计数器增量中断寄存器CIIR,使计数器每增加1就产生一次中断。RTC的控制在时钟控制寄存器CCR中,我们可以使能或禁止时钟,以及复位等。

    在下面的程序中,首先PC端使用串口软件发送一串固定格式的时间信息给开发板,开发板收到字符‘a’表示后面跟着的是时间信息,设置了初始时间后,我们配置CCIR使1秒产生一次中断,配置报警寄存器组合报价屏蔽寄存器,使秒计数为30的时候产生中断。在RTC的中断函数中,如果是计数中断,就让接LED的GPIO输出反向电平,根据设置LED灯将1S闪烁。 如果是报警中断,就通过串口在PC打印时间信息。

注意:为了程序的简洁,省去了之前介绍了的系统时钟配置和串口的配置。具体的信息可查询之前的文章。

  1. #include "LPC1788_REG.h" 
  2. #include "uart.h" 
  3.  
  4. #define rILR    (*(volatile unsigned*)0x40024000) 
  5. #define rCCR    (*(volatile unsigned*)0x40024008) 
  6. #define rCIIR   (*(volatile unsigned*)0x4002400C) 
  7. #define rAMR    (*(volatile unsigned*)0x40024010) 
  8. #define rCALIBRATION    (*(volatile unsigned*)0x40024040) 
  9.  
  10. #define rYEAR   (*(volatile unsigned*)0x4002403C) 
  11. #define rMONTH  (*(volatile unsigned*)0x40024038) 
  12. #define rDOM    (*(volatile unsigned*)0x4002402C) 
  13. #define rHOUR   (*(volatile unsigned*)0x40024028) 
  14. #define rMIN    (*(volatile unsigned*)0x40024024) 
  15. #define rSEC    (*(volatile unsigned*)0x40024020) 
  16.  
  17. #define rALSEC  (*(volatile unsigned*)0x40024060) 
  18.  
  19. #define rCTIME0 (*(volatile unsigned*)0x40024014) 
  20. #define rCTIME1 (*(volatile unsigned*)0x40024018) 
  21. #define rCTIME2 (*(volatile unsigned*)0x4002401C) 
  22.  
  23. unsigned char flag_setTime=1; 
  24. unsigned char flag_receiveStatus=0; 
  25. unsigned char timeData[14],cnt; 
  26.  
  27. void Set_Data() 
  28.     rCCR &= ~(0x1<<0); 
  29.     rYEAR = (timeData[0]-'0')*1000 + (timeData[1]-'0')*100 + (timeData[2]-'0')*10 + (timeData[3]-'0'); 
  30.     rMONTH = (timeData[4]-'0')*10 + (timeData[5]-'0'); 
  31.     rDOM = (timeData[6]-'0')*10 + (timeData[7]-'0'); 
  32.     rHOUR = (timeData[8]-'0')*10 + (timeData[9]-'0'); 
  33.     rMIN =  (timeData[10]-'0')*10 + (timeData[11]-'0'); 
  34.     rSEC =  (timeData[12]-'0')*10 + (timeData[13]-'0'); 
  35.  
  36. void Display_Data() 
  37.     Uart2SendC('\n'); 
  38.     Uart2SendC(rYEAR/1000+'0'); 
  39.     Uart2SendC(rYEAR%1000/100+'0'); 
  40.     Uart2SendC(rYEAR%100/10+'0'); 
  41.     Uart2SendC(rYEAR%10+'0'); 
  42.     Uart2SendC('-'); 
  43.     Uart2SendC(rMONTH/10+'0'); 
  44.     Uart2SendC(rMONTH%10+'0'); 
  45.     Uart2SendC('-'); 
  46.     Uart2SendC(rDOM/10+'0'); 
  47.     Uart2SendC(rDOM%10+'0'); 
  48.     Uart2SendC('\n'); 
  49.     Uart2SendC(rHOUR/10+'0'); 
  50.     Uart2SendC(rHOUR%10+'0'); 
  51.     Uart2SendC(':'); 
  52.     Uart2SendC(rMIN/10+'0'); 
  53.     Uart2SendC(rMIN%10+'0'); 
  54.     Uart2SendC(':'); 
  55.     Uart2SendC(rSEC/10+'0'); 
  56.     Uart2SendC(rSEC%10+'0'); 
  57.      
  58. void UART2_IRQHandler() 
  59.     unsigned int intId; 
  60.     char tmp_char; 
  61.      
  62.     intId = rU2IIR&0xf; 
  63.     if(intId == 0xc || intId == 0x4)    //RDA或者CTI中断 
  64.     { 
  65.         rU2LCR &= ~(0x1<<7);  //DLAB=0 
  66.         tmp_char = rU2RBR&0xff; 
  67.         rU2THR = tmp_char; 
  68.     } 
  69.      
  70.     if(tmp_char == 'a' && flag_receiveStatus == 0) 
  71.     { 
  72.         flag_receiveStatus = 1; 
  73.         cnt = 0; 
  74.     } 
  75.     elseif(flag_receiveStatus == 1) 
  76.     { 
  77.         timeData[cnt]=tmp_char; 
  78.         cnt++; 
  79.         if(cnt == 14) 
  80.         { 
  81.             Set_Data(); 
  82.             cnt = 0; 
  83.             flag_receiveStatus = 0; 
  84.             flag_setTime=0; 
  85.         } 
  86.     } 
  87.  
  88. void RTC_IRQHandler() 
  89.     unsigned char IntStatus; 
  90.     IntStatus = rILR; 
  91.     if(IntStatus & 0x1)  //计数中断 
  92.     { 
  93.         rFIO1PIN = ~rFIO1PIN; 
  94.         rILR = IntStatus; 
  95.     } 
  96.     elseif (IntStatus & (0x1<<1))    //报警中断 
  97.     { 
  98.         Display_Data(); 
  99.         rILR = IntStatus; 
  100.     } 
  101.      
  102.      
  103. void Init_RTC() 
  104.     rILR = 0; 
  105.     rCCR = 0; 
  106.     rCIIR = 0; 
  107.     rAMR = 0xff; 
  108.     rCALIBRATION = 0; 
  109.      
  110.     rCCR |= 0x1<<1;   //CTC Reset 
  111.     rCCR &= ~(0x1<<1); 
  112.  
  113. int main(void
  114.     char menu[] = {"\n\r===> Send a frame with 6 Byte data to set RTC \n['a']+[year]+[month]+[day]+[hour]+[minute]+[second]\n"}; 
  115.     char str[]={"\r\nTime set ok! \r\nCurrent time set to:\r\n"}; 
  116.     rFIO1DIR |= (1<<18); //GPIO1.18 -> OUTPUT 
  117.     Init_Uart2(); 
  118.     Uart2SendS(menu); 
  119.     while(flag_setTime); 
  120.     Uart2SendS(str); 
  121.     Display_Data(); 
  122.  
  123.     rCCR |= 0x1; 
  124.     rCCR |= 0x1<<4; 
  125.     rCIIR |= 0x1;       //秒值增加产生一次中断 
  126.     rAMR &= ~(0x1<<0);  //秒值与报警寄存器比较 
  127.  
  128.     rALSEC = 30;    //秒值为30的时候产生一个报警 
  129.  
  130.     rISER0 |= 0x1<<17;  //使能RTC中断 
  131.     while(1); 
#include "LPC1788_REG.h"
#include "uart.h"

#define rILR	(*(volatile unsigned*)0x40024000)
#define rCCR	(*(volatile unsigned*)0x40024008)
#define rCIIR	(*(volatile unsigned*)0x4002400C)
#define rAMR	(*(volatile unsigned*)0x40024010)
#define rCALIBRATION	(*(volatile unsigned*)0x40024040)

#define rYEAR	(*(volatile unsigned*)0x4002403C)
#define rMONTH	(*(volatile unsigned*)0x40024038)
#define rDOM	(*(volatile unsigned*)0x4002402C)
#define rHOUR	(*(volatile unsigned*)0x40024028)
#define rMIN	(*(volatile unsigned*)0x40024024)
#define rSEC	(*(volatile unsigned*)0x40024020)

#define rALSEC	(*(volatile unsigned*)0x40024060)

#define rCTIME0	(*(volatile unsigned*)0x40024014)
#define rCTIME1	(*(volatile unsigned*)0x40024018)
#define rCTIME2	(*(volatile unsigned*)0x4002401C)

unsigned char flag_setTime=1;
unsigned char flag_receiveStatus=0;
unsigned char timeData[14],cnt;

void Set_Data()
{
	rCCR &= ~(0x1<<0);
	rYEAR = (timeData[0]-'0')*1000 + (timeData[1]-'0')*100 + (timeData[2]-'0')*10 + (timeData[3]-'0');
	rMONTH = (timeData[4]-'0')*10 + (timeData[5]-'0');
	rDOM = (timeData[6]-'0')*10 + (timeData[7]-'0');
	rHOUR = (timeData[8]-'0')*10 + (timeData[9]-'0');
	rMIN =  (timeData[10]-'0')*10 + (timeData[11]-'0');
	rSEC =  (timeData[12]-'0')*10 + (timeData[13]-'0');
}

void Display_Data()
{
	Uart2SendC('\n');
	Uart2SendC(rYEAR/1000+'0');
	Uart2SendC(rYEAR%1000/100+'0');
	Uart2SendC(rYEAR%100/10+'0');
	Uart2SendC(rYEAR%10+'0');
	Uart2SendC('-');
	Uart2SendC(rMONTH/10+'0');
	Uart2SendC(rMONTH%10+'0');
	Uart2SendC('-');
	Uart2SendC(rDOM/10+'0');
	Uart2SendC(rDOM%10+'0');
	Uart2SendC('\n');
	Uart2SendC(rHOUR/10+'0');
	Uart2SendC(rHOUR%10+'0');
	Uart2SendC(':');
	Uart2SendC(rMIN/10+'0');
	Uart2SendC(rMIN%10+'0');
	Uart2SendC(':');
	Uart2SendC(rSEC/10+'0');
	Uart2SendC(rSEC%10+'0');
}
	
void UART2_IRQHandler()
{
	unsigned int intId;
	char tmp_char;
	
	intId = rU2IIR&0xf;
	if(intId == 0xc || intId == 0x4)	//RDA或者CTI中断
	{
		rU2LCR &= ~(0x1<<7);	//DLAB=0
		tmp_char = rU2RBR&0xff;
		rU2THR = tmp_char;
	}
	
	if(tmp_char == 'a' && flag_receiveStatus == 0)
	{
		flag_receiveStatus = 1;
		cnt = 0;
	}
	else if(flag_receiveStatus == 1)
	{
		timeData[cnt]=tmp_char;
		cnt++;
		if(cnt == 14)
		{
			Set_Data();
			cnt = 0;
			flag_receiveStatus = 0;
			flag_setTime=0;
		}
	}
}

void RTC_IRQHandler()
{
	unsigned char IntStatus;
	IntStatus = rILR;
	if(IntStatus & 0x1)  //计数中断
	{
		rFIO1PIN = ~rFIO1PIN;
		rILR = IntStatus;
	}
	else if (IntStatus & (0x1<<1))	//报警中断
	{
		Display_Data();
		rILR = IntStatus;
	}
	
}
	
void Init_RTC()
{
	rILR = 0;
	rCCR = 0;
	rCIIR = 0;
	rAMR = 0xff;
	rCALIBRATION = 0;
	
	rCCR |= 0x1<<1;  	//CTC Reset
	rCCR &= ~(0x1<<1);
}

int main(void)
{
	char menu[] = {"\n\r===> Send a frame with 6 Byte data to set RTC \n['a']+[year]+[month]+[day]+[hour]+[minute]+[second]\n"};
	char str[]={"\r\nTime set ok! \r\nCurrent time set to:\r\n"};
	rFIO1DIR |= (1<<18); //GPIO1.18 -> OUTPUT
	Init_Uart2();
	Uart2SendS(menu);
	while(flag_setTime);
	Uart2SendS(str);
	Display_Data();

	rCCR |= 0x1;
	rCCR |= 0x1<<4;
	rCIIR |= 0x1;		//秒值增加产生一次中断
	rAMR &= ~(0x1<<0);  //秒值与报警寄存器比较

	rALSEC = 30;	//秒值为30的时候产生一个报警

	rISER0 |= 0x1<<17;  //使能RTC中断
	while(1);
}

程序运行串口打印信息如下图:

RTC

原文地址:https://www.cnblogs.com/tdyizhen1314/p/2704593.html