CountDownLatch&&CyclicBarrier

CountDownLatch

CountDownLatch是什么

CountDownLatch是JDK提供的一个同步工具,它可以让一个或多个线程等待,一直等到其他线程中执行完成一组操作。

常用方法
  • CountDownLatch(int):设置线程数量,即设置计数器的值
  • countDown():计数器减1
  • await():如果计数器大于0时,线程会被阻塞,一直到计数器被countDown()方法减到0时,线程才会继续执行。
实践案例

现在小明、小红、小蓝、小芳约好一起到小娜的餐厅吃饭。然后大家都比较熟,所以就决定等到人来齐了的时候在上菜。但是大家也不是无限的等,等一定时间以后,实在等不到就先开始上菜。

public class Customer implements Runnable{
    private CountDownLatch latch;
    private String name;
    public Customer(CountDownLatch latch, String name) {
        this.latch = latch;
        this.name = name;
    }
    @Override
    public void run() {
        try {
            System.out.println(name + "出发了");
            int time = new Random().nextInt(1000);
            Thread.sleep(time);
            System.out.println(name + "到达了餐厅");
            latch.countDown();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}
public class Waitress implements Runnable {
    private CountDownLatch latch;
    private String name;
    public Waitress(CountDownLatch latch, String name) {
        this.latch = latch;
        this.name = name;
    }
    @Override
    public void run() {
        try {
            System.out.println(name + "小姐姐在等待顾客来齐");
            latch.await(2, TimeUnit.SECONDS);//等一段时候后就不等了
            System.out.println("顾客来齐了,开始上菜" + latch.getCount());
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}
public class Main {
    public static void main(String[] args) {
        CountDownLatch latch = new CountDownLatch(3);
        List<Thread> list = new ArrayList<>();
        Customer customer1 = new Customer(latch,"小明");
        Customer customer2 = new Customer(latch,"小红");
        Customer customer3 = new Customer(latch,"小蓝");
        Customer customer4 = new Customer(latch,"小芳");
        list.add(new Thread(customer1));
        list.add(new Thread(customer2));
        list.add(new Thread(customer3));
        list.add(new Thread(customer4));
        Waitress waitress = new Waitress(latch,"小娜");
        new Thread(waitress).start();
        for (Thread t:list) {
            t.start();
        }
    }
}

运行结果

实现原理

CountDownLatch有一个内部类叫Sync,它继承了AbstractQueuedSynchronizer类,其中维护了一个整数state,并保证了修改state的可见性和原子性。

CountDownLatch(int)

创建CountDownLatch实例时,也会创建一个Sync的实例,同时把计数器的值传给Sync实例,具体是这样的:

public CountDownLatch(int count) {
    if (count < 0) throw new IllegalArgumentException("count < 0");
    this.sync = new Sync(count);
}
private static final class Sync extends AbstractQueuedSynchronizer {//基于AQS实现的
    private static final long serialVersionUID = 4982264981922014374L;
    Sync(int count) {
        setState(count);
    }
    int getCount() {
        return getState();
    }
    protected int tryAcquireShared(int acquires) {
        return (getState() == 0) ? 1 : -1;
    }
    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            int c = getState();
            if (c == 0)
                return false;
            int nextc = c-1;
            if (compareAndSetState(c, nextc))
                return nextc == 0;
        }
    }
}
countDown

countDown方法中,只调用了Sync实例的ReleaseShared方法,具体是这样的:

public void countDown() {
	sync.releaseShared(1);//计数器减1
}

其中releaseShared方法具体是这样的

public final boolean releaseShared(int arg) {
    if (tryReleaseShared(arg)) {//state减一
        //当state为0时唤醒阻塞的线程
        doReleaseShared();
        return true;
    }
    return false;
}
protected boolean tryReleaseShared(int releases) {
    //以自旋的方式将state减1并返回锁是否完全释放
    for (;;) {
        int c = getState();
        if (c == 0)
            return false;
        int nextc = c-1;
        if (compareAndSetState(c, nextc))
            return nextc == 0;
    }
}
private void doReleaseShared() {
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;            // loop to recheck cases
                unparkSuccessor(h);
            }
            else if (ws == 0 &&
                     !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        if (h == head)                   // loop if head changed
            break;
    }
}
await
public void await() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}
//实际调用的是这个
public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (tryAcquireShared(arg) < 0)
        doAcquireSharedInterruptibly(arg);
}

private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
    final Node node = addWaiter(Node.SHARED);//将当前线程分装为SHARED的Node
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&//将其上一个合法结点设置为SIGNAL状态
                parkAndCheckInterrupt())//使当前线程park
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

CyclicBarrier

CyclicBarrier是什么

一种同步帮助,它允许一组线程全部互相等待以到达一个公共的障碍点。 CyclicBarriers在涉及固定大小的线程方的程序中很有用,该线程方有时必须互相等待。 该屏障称为循环屏障,因为它可以在释放等待线程之后重新使用。

常用方法
  • CyclicBarrier(int parties, Runnable barrierAction):创建一个新的CyclicBarrier ,当给定数量的参与者(线程)正在等待它时,它将跳闸;当屏障被跳开时,它将由进入屏障的最后一个线程执行,从而执行给定的屏障动作。
  • int await():等到所有各方都在此障碍上调用await 。
  • int await(long timeout, TimeUnit unit):等到所有各方都在此障碍上调用await 。设置超时限制,超时后不再等待。
实践案例

现在小明、小红、小蓝、小芳约好一起去团建。具体流程如下:大家早上先到地点A处集合等大家都到了之后,再各自打车到团建目的地B入口等人齐了之后一起进去,结束之后大家约定一起从C出口等人齐了之后在各自回家。

public class Person implements Runnable{
    private CyclicBarrier cyclicBarrier;
    private String name;

    public Person(CyclicBarrier cyclicBarrier, String name) {
        this.cyclicBarrier = cyclicBarrier;
        this.name = name;
    }

    @Override
    public void run() {
        Random random = new Random();
        try {
            Thread.sleep(random.nextInt(1000));
            System.out.println(name + "到达第一个集合点A");
            cyclicBarrier.await();
            Thread.sleep(random.nextInt(1000));
            System.out.println(name + "到达第二个集合点B");
            cyclicBarrier.await();
            Thread.sleep(random.nextInt(1000));
            System.out.println(name + "到达第三个集合点C");
            cyclicBarrier.await();
        } catch (InterruptedException | BrokenBarrierException e) {
            e.printStackTrace();
        }
    }
}

public class Main {
    public static void main(String[] args) {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(4,()->{
            System.out.println("人来齐了可以出发了 GO GO GO ...");
        });
        List<Thread> list = new ArrayList<>();
        Person person1 = new Person(cyclicBarrier,"小明");
        Person person2 = new Person(cyclicBarrier,"小红");
        Person person3 = new Person(cyclicBarrier,"小蓝");
        Person person4 = new Person(cyclicBarrier,"小芳");
        list.add(new Thread(person1));
        list.add(new Thread(person2));
        list.add(new Thread(person3));
        list.add(new Thread(person4));

        for (Thread t:list) {
            t.start();
        }
        System.out.println("main end");
    }
}

运行结果

实现原理
成员变量
/** 同步操作锁 */
private final ReentrantLock lock = new ReentrantLock();
/** 线程拦截器 Condition维护了一个阻塞队列*/
private final Condition trip = lock.newCondition();
/** 每次拦截的线程数 */
private final int parties;
/* 换代前执行的任务 */
private final Runnable barrierCommand;
/** 表示栅栏的当前代 类似代表本局游戏*/
private Generation generation = new Generation();
/** 计数器 */
private int count;
/** 静态内部类Generation  */
private static class Generation {
    boolean broken = false;
}
构造方法
/** 
创建一个新的CyclicBarrier,它将在给定数量的参与方(线程)等待时触发,并在触发屏障时执行给定的屏障操作,由最后一个进入屏障的线程执行 */   
public CyclicBarrier(int parties, Runnable barrierAction) {
    if (parties <= 0) throw new IllegalArgumentException();
    this.parties = parties;
    this.count = parties;
    this.barrierCommand = barrierAction;
}

/** 创建一个新的CyclicBarrier,当给定数量的参与方(线程)在等待它时,它将跳闸,并且在屏障跳闸时不执行预定义的操作 */
public CyclicBarrier(int parties) {
    this(parties, null);
}
核心方法
public int await() throws InterruptedException, BrokenBarrierException {
    try {
        return dowait(false, 0L);
    } catch (TimeoutException toe) {
        throw new Error(toe); // cannot happen
    }
}
//定时等待
public int await(long timeout, TimeUnit unit)throws InterruptedException,
BrokenBarrierException,
TimeoutException {
    return dowait(true, unit.toNanos(timeout));
}

这个两个方法实质上都是走的dowait方法,只不过传递的参数不同

private int dowait(boolean timed, long nanos)
    throws InterruptedException, BrokenBarrierException,
TimeoutException {
    final ReentrantLock lock = this.lock;
    lock.lock();//加锁操作
    try {
        final Generation g = generation;
        //检查当前栅栏是否被打翻
        if (g.broken)
            throw new BrokenBarrierException();
        //检查当前线程是否被中断
        if (Thread.interrupted()) {
            breakBarrier();
            throw new InterruptedException();
        }
        //每次都将计数器的值-1
        int index = --count;
        //计数器的值减为0,则需要唤醒所有线程并转换到下一代
        if (index == 0) {  // tripped
            boolean ranAction = false;
            try {
                //唤醒所有线程前先执行指定的任务
                final Runnable command = barrierCommand;
                if (command != null)
                    command.run();
                ranAction = true;
                //唤醒所有线程并转换到下一代
                nextGeneration();
                return 0;
            } finally {
                //确保在任务未成功执行时能将所有线程唤醒
                if (!ranAction)
                    breakBarrier();
            }
        }
        //如果计数器不为0 则执行此循环
        // loop until tripped, broken, interrupted, or timed out
        for (;;) {
            try {
                //根据传入的参数来觉得是定时等待还是非定时等待
                if (!timed)
                    //如果没有时间限制,则直接等待,直到被唤醒
                    trip.await();
                else if (nanos > 0L)
                    //如果有时间限制,则等待指定时间
                    nanos = trip.awaitNanos(nanos);
            } catch (InterruptedException ie) {
                //若当前线程在等待期间被中断则打翻栅栏唤醒其它线程
                if (g == generation && ! g.broken) {
                    breakBarrier();
                    throw ie;
                } else {
                    // 若在捕获中断异常前已经完成在栅栏上的等待,则直接调用中断操作
                    Thread.currentThread().interrupt();
                }
            }
            //如果线程因为打翻栅栏操作而被唤醒则抛出异常
            if (g.broken)
                throw new BrokenBarrierException();
            //如果线程因为换代操作而被唤醒则返回计数器的值
            if (g != generation)
                return index;
            //如果线程因为时间到了而被唤醒则打翻栅栏并抛出异常
            if (timed && nanos <= 0L) {
                breakBarrier();
                throw new TimeoutException();
            }
        }
    } finally {
        lock.unlock();//最终解锁
    }
}
//当计数器的值减为0,则需要唤醒所有线程并转换到下一代
private void nextGeneration() {
    // signal completion of last generation
    trip.signalAll();
    // set up next generation
    count = parties;
    generation = new Generation();
}
//若当前线程在等待期间被中断则打翻栅栏唤醒其它线程
private void breakBarrier() {
    generation.broken = true;
    count = parties;
    trip.signalAll();
}

CyclicBarrier 与 CountDownLatch 的区别

相同点:

  • 都可以实现一组线程达到某个条件之前等待
  • 内部都有一个计数器,当计数器的值减为 0 时所有阻塞的线程都会被唤醒
  • 都是基于AQS实现的

不同点:

  • CyclicBarrier的计数器是由自己控制的,CountDownLatch 的计数器由调用者控制
  • 在CyclicBarrier中调用await不仅会使自己阻塞,还会是计数器减一。CountDownLatch调用await只会使自己阻塞,调用countDown使才会使计数器减一。
  • CyclicBarrier可以循环使用,CountDownLatch只能使用一次

参考链接:https://mp.weixin.qq.com/s/jfCLg7OjTsZ5sIJhGXAM2A

原文地址:https://www.cnblogs.com/shaoyu/p/14773680.html