Solution -「Tenka1 2019 D」Three Colors

(mathcal{Description})

  Link.

  给定 ({a_n}),把每个元素划分入可重集 (R,G,B) 中的恰好一个,求满足 (sum R,sum G,sum B) 能够作为正面积三角形三边的划分方案数。对 (998244353) 取模。

  (n,a_ile300)

(mathcal{Solution})

   不妨令 (sum R,sum Glesum B)(注意 (sum R)(sum G) 不钦定偏序关系),正难则反,考虑用总方案数 (3^n) 减去 (3)(sum R+sum Gle sum B) 的方案数。令 (f(i,j)) 表示考虑了前 (i) 个数,(sum R+sum G=j) 的方案数。转移显然:

[f(i,j)=f(i-1,j)+2f(i-1,j-a_i) ]

  不过,这样求出来的方案数中包含了 (R=varnothing)(Q=varnothing) 的方案数,因而 (sum R+sum G=sum B) 的情形会算重。把转移方程的系数 (2) 去掉再来一遍补上多算的答案即可。

(mathcal{Code})

/* Clearink */

#include <cstdio>

const int MAXN = 300, MOD = 998244353;
int n, S, a[MAXN + 5], f[MAXN * MAXN + 5];

inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }

inline int qkpow ( int a, int b ) {
	int ret = 1;
	for ( ; b; a = mul ( a, a ), b >>= 1 ) ret = mul ( ret, b & 1 ? a : 1 );
	return ret;
}

int main () {
	scanf ( "%d", &n );
	for ( int i = 1; i <= n; ++ i ) scanf ( "%d", &a[i] ), S += a[i];
	f[0] = 1;
	for ( int i = 1; i <= n; ++ i ) {
		for ( int j = S >> 1; j >= a[i]; -- j ) {
			f[j] = add ( f[j], mul ( 2, f[j - a[i]] ) );
		}
	}
	int ans = qkpow ( 3, n );
	for ( int i = 0; i <= S >> 1; ++ i ) ans = sub ( ans, mul ( 3, f[i] ) );
	if ( S & 1 ) return printf ( "%d
", ans ), 0;
	for ( int i = 0; i <= S >> 1; ++ i ) f[i] = 0;
	f[0] = 1;
	for ( int i = 1; i <= n; ++ i ) {
		for ( int j = S >> 1; j >= a[i]; -- j ) {
			f[j] = add ( f[j], f[j - a[i]] );
		}
	}
	ans = add ( ans, mul ( 3, f[S >> 1] ) );
	printf ( "%d
", ans );
	return 0;
}

(mathcal{Details})

  正难则反吖!

原文地址:https://www.cnblogs.com/rainybunny/p/13982017.html