2.3 行列式的性质

(A = (a_{ij})),将(A)的元素行列对换即:

[egin{vmatrix} a_{11} & a_{21} & cdots & a_{n1} \ a_{12} & a_{22} & cdots & a_{n2} \ vdots & vdots & & vdots \ a_{1n} & a_{2n} & cdots & a_{nn} end{vmatrix} ]

称为(A)的转置,记为(A')(A^T)

性质 1:(|A'| = |A|)

证明:利用 2.2 节最后的推论可得:

[egin{aligned} |A'| &= sum_{i_1i_2dots i_n}(-1)^{ au(i_1i_2dots i_n)}a_{1i_1}a_{2i_2}dots a_{ni_n} \ |A| &= sum_{i_1i_2dots i_n}(-1)^{ au(i_1i_2dots i_n)}a_{1i_1}a_{2i_2}dots a_{ni_n} \ end{aligned} ]

[ herefore |A'| = |A| ]

性质 2:

[egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ ka_{i1}& ka_{i2} & cdots & ka_{in} \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} = k egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ a_{i1}& a_{i2} & cdots & a_{in} \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} ]

证明:等号左侧的行列式记为(|B|),右侧的行列式记为(|A|)

[egin{aligned} |A'| &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}dots (ka_{ij_i})dots a_{nj_n} \ &= ksum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}dots a_{ij_i}dots a_{nj_n} \ &= k|A|(k = 0时仍成立) end{aligned} ]

推论:行列式出现(0)行,则行列式为(0)

性质 3:

[egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ a_{i1}+b_1& a_{i2} + b_2 & cdots & a_{in}+b_n \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} = egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ a_{i1}& a_{i2} & cdots & a_{in} \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} + egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ b_1& b_2 & cdots & b_n \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} ]

证明:

[egin{aligned} 左式 &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}dots (a_{ij_i} + b_{j_i})dots a_{nj_n} \ &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}dots a_{ij_i}dots a_{nj_n} \ &+ sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}dots b_{j_i}dots a_{nj_n} \ &= 右式 end{aligned} ]

性质 4:

[(-1) cdot egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ a_{i1}& a_{i2} & cdots & a_{in} \ vdots & vdots & & vdots \ a_{k1}& a_{k2} & cdots & a_{kn} \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} = egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n} \ vdots & vdots & & vdots \ a_{k1}& a_{k2} & cdots & a_{kn} \ vdots & vdots & & vdots \ a_{i1}& a_{i2} & cdots & a_{in} \ vdots & vdots & & vdots \ a_{n1} & a_{n2} & cdots & a_{nn} end{vmatrix} ]

证明:

[egin{aligned} 右边 &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1dots j_idots j_k dots j_n)}a_{1j_1}dots a_{kj_i}dots a_{ij_k} dots a_{nj_n} \ &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1dots j_idots j_k dots j_n) + 1}a_{1j_1}dots a_{ij_i}dots a_{kj_k} dots a_{nj_n} \ &= 左边 end{aligned} ]

性质 5:若行列式两行相等,则行列式为(0)

证明:根据性质 4,两行对换,(|A| = -|A| Rightarrow |A| = 0)

性质 6:两行成比例,行列式为(0)

性质 7:(A stackrel{ⓚ+ⓘcdot l}{longrightarrow} D),则(|A| = |D|)

例 1:

[egin{aligned} egin{vmatrix} k & lambda & cdots & lambda \ lambda & k & cdots & lambda \ vdots & vdots & ddots & vdots \ lambda & lambda & cdots & k end{vmatrix} &= egin{vmatrix} k + (n - 1)lambda & k + (n - 1)lambda & cdots & k + (n - 1)lambda \ lambda & k & cdots & lambda \ vdots & vdots & ddots & vdots \ lambda & lambda & cdots & k end{vmatrix} \ &= [k + (n - 1)lambda ] egin{vmatrix} 1 & 1 & cdots & 1 \ lambda & k & cdots & lambda \ vdots & vdots & ddots & vdots \ lambda & lambda & cdots & k end{vmatrix} \ &= [k + (n - 1)lambda ] egin{vmatrix} 1 & 1 & cdots & 1 \ 0 & k - lambda & cdots & 0 \ vdots & vdots & ddots & vdots \ 0 & 0 & cdots & k - lambda end{vmatrix} \ &= (k - lambda)^{n - 1} [k + (n-1)lambda] end{aligned} ]

原文地址:https://www.cnblogs.com/miraclepbc/p/14435933.html