#pragma hdrstop

#pragma hdrstop
#pragma hdrstop 表示预编译头文件到此为止,后面的头文件不进行预编译。BCB 可以
预编译头文件以加快链接的速度,但如果所有头文件都进行预编译又可能占太多磁盘空间,
所以使用这个选项排除一些头文件。
有时单元之间有依赖关系,比如单元A 依赖单元B,所以单元B 要先于单元A 编译。
你可以用#pragma startup 指定编译优先级,如果使用了#pragma package(smart_init) ,BCB
就会根据优先级的大小先后编译。

#pragma resource
#pragma resource "*.dfm"表示把*.dfm 文件中的资源加入工程。*.dfm 中包括窗体
外观的定义。

3.6.5,#pragma resource
#pragma resource "*.dfm"表示把*.dfm 文件中的资源加入工程。*.dfm 中包括窗体
外观的定义。


3.6.6,#pragma warning
#pragma warning( disable : 4507 34; once : 4385; error : 164 )
等价于:
#pragma warning(disable:4507 34) // 不显示4507 和34 号警告信息
#pragma warning(once:4385) // 4385 号警告信息仅报告一次
#pragma warning(error:164) // 把164 号警告信息作为一个错误。
同时这个pragma warning 也支持如下格式:
#pragma warning( push [ ,n ] )
#pragma warning( pop )
这里n 代表一个警告等级(1---4)。
#pragma warning( push )保存所有警告信息的现有的警告状态。
#pragma warning( push, n)保存所有警告信息的现有的警告状态,并且把全局警告
等级设定为n。
#pragma warning( pop )向栈中弹出最后一个警告信息,在入栈和出栈之间所作的
一切改动取消。例如:
#pragma warning( push )
#pragma warning( disable : 4705 )
#pragma warning( disable : 4706 )
#pragma warning( disable : 4707 )
//.......
#pragma warning( pop )
在这段代码的最后,重新保存所有的警告信息(包括4705,4706 和4707)。

3.6.8,#pragma pack
这里重点讨论内存对齐的问题和#pragma pack()的使用方法。
什么是内存对齐?
先看下面的结构:
struct TestStruct1
{
char c1;
short s;
char c2;
int i;
};
假设这个结构的成员在内存中是紧凑排列的,假设c1 的地址是0,那么s 的地址就应该
是1,c2 的地址就是3,i 的地址就是4。也就是c1 地址为00000000, s 地址为00000001, c2
地址为00000003, i 地址为00000004。
可是,我们在Visual C++6.0 中写一个简单的程序:
struct TestStruct1 a;
printf("c1 %p, s %p, c2 %p, i %p ",
(unsigned int)(void*)&a.c1 - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.s - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.c2 - (unsigned int)(void*)&a,
(unsigned int)(void*)&a.i - (unsigned int)(void*)&a);
运行,输出:
c1 00000000, s 00000002, c2 00000004, i 00000008。
为什么会这样?这就是内存对齐而导致的问题。
3.6.8.1,为什么会有内存对齐?
字,双字,和四字在自然边界上不需要在内存中对齐。(对字,双字,和四字来说,自
然边界分别是偶数地址,可以被4 整除的地址,和可以被8 整除的地址。)无论如何,为了
提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为
了访问未对齐的内存,处理器需要作两次内存访问;然而,对齐的内存访问仅需要一次访
问。
一个字或双字操作数跨越了4 字节边界,或者一个四字操作数跨越了8 字节边界,被
认为是未对齐的,从而需要两次总线周期来访问内存。一个字起始地址是奇数但却没有跨
越字边界被认为是对齐的,能够在一个总线周期中被访问。某些操作双四字的指令需要内
存操作数在自然边界上对齐。如果操作数没有对齐,这些指令将会产生一个通用保护异常。
双四字的自然边界是能够被16 整除的地址。其他的操作双四字的指令允许未对齐的访问
(不会产生通用保护异常),然而,需要额外的内存总线周期来访问内存中未对齐的数据。
缺省情况下,编译器默认将结构、栈中的成员数据进行内存对齐。因此,上面的程序输
出就变成了:c1 00000000, s 00000002, c2 00000004, i 00000008。编译器将未对齐的成员向后
移,将每一个都成员对齐到自然边界上,从而也导致了整个结构的尺寸变大。尽管会牺牲
一点空间(成员之间有部分内存空闲),但提高了性能。也正是这个原因,我们不可以断言
sizeof(TestStruct1)的结果为8。在这个例子中,sizeof(TestStruct1)的结果为12。
3.6.8.2,如何避免内存对齐的影响
那么,能不能既达到提高性能的目的,又能节约一点空间呢?有一点小技巧可以使用。
比如我们可以将上面的结构改成:
struct TestStruct2
{
char c1;
char c2;
short s;
int i;
};
这样一来,每个成员都对齐在其自然边界上,从而避免了编译器自动对齐。在这个例
子中,sizeof(TestStruct2)的值为8。这个技巧有一个重要的作用,尤其是这个结构作为API
的一部分提供给第三方开发使用的时候。第三方开发者可能将编译器的默认对齐选项改变,
从而造成这个结构在你的发行的DLL 中使用某种对齐方式,而在第三方开发者哪里却使用
另外一种对齐方式。这将会导致重大问题。
比如,TestStruct1 结构,我们的DLL 使用默认对齐选项,对齐为
c1 00000000, s 00000002, c2 00000004, i 00000008,同时sizeof(TestStruct1)的值为12。
而第三方将对齐选项关闭,导致
c1 00000000, s 00000001, c2 00000003, i 00000004,同时sizeof(TestStruct1)的值为8。
除此之外我们还可以利用#pragma pack()来改变编译器的默认对齐方式(当然一般编译器
也提供了一些改变对齐方式的选项,这里不讨论)。
使用指令#pragma pack (n),编译器将按照n 个字节对齐。
使用指令#pragma pack (),编译器将取消自定义字节对齐方式。
在#pragma pack (n)和#pragma pack ()之间的代码按n 个字节对齐。
但是,成员对齐有一个重要的条件,即每个成员按自己的方式对齐.也就是说虽然指定了
按n 字节对齐,但并不是所有的成员都是以n 字节对齐。其对齐的规则是,每个成员按其类型
的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是n 字节)中较小的一个对齐,即:
min( n, sizeof( item )) 。并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空
字节。看如下例子:
#pragma pack(8)
struct TestStruct4
{
char a;
long b;
};
struct TestStruct5
{
char c;
TestStruct4 d;
long long e;
};
#pragma pack()
问题:
A),sizeof(TestStruct5) = ?
B), TestStruct5 的c 后面空了几个字节接着是d?
TestStruct4 中,成员a 是1 字节默认按1 字节对齐,指定对齐参数为8,这两个值中取1,a
按1 字节对齐;成员b 是4 个字节,默认是按4 字节对齐,这时就按4 字节对齐,所以
sizeof(TestStruct4)应该为8;
TestStruct5 中,c 和TestStruct4 中的a 一样,按1 字节对齐,而d 是个结构,它是8 个字节,它
按什么对齐呢?对于结构来说,它的默认对齐方式就是它的所有成员使用的对齐参数中最大
的一个, TestStruct4 的就是4.所以,成员d 就是按4 字节对齐.成员e 是8 个字节,它是默认按8
字节对齐,和指定的一样,所以它对到8 字节的边界上,这时,已经使用了12 个字节了,所以又添
加了4 个字节的空,从第16 个字节开始放置成员e.这时,长度为24,已经可以被8(成员e 按8
字节对齐)整除.这样,一共使用了24 个字节.内存布局如下(*表示空闲内存,1 表示使用内存。
单位为1byete):
a b
TestStruct4 的内存布局:1***,1111,
c TestStruct4.a TestStruct4.b d
TestStruct5 的内存布局: 1***, 1***, 1111, ****,11111111
这里有三点很重要:
首先,每个成员分别按自己的方式对齐,并能最小化长度。
其次,复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂
类型时,可以最小化长度。
然后,对齐后的长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保
证每一项都边界对齐。
补充一下,对于数组,比如:char a[3];它的对齐方式和分别写3 个char 是一样的.也就是说
它还是按1 个字节对齐.如果写: typedef char Array3[3];Array3 这种类型的对齐方式还是按1
个字节对齐,而不是按它的长度。
但是不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个。
另外,注意别的#pragma pack 的其他用法:
#pragma pack(push) //保存当前对其方式到packing stack
#pragma pack(push,n) 等效于
#pragma pack(push)
#pragma pack(n) //n=1,2,4,8,16 保存当前对齐方式,设置按n 字节对齐
#pragma pack(pop) //packing stack 出栈,并将对其方式设置为出栈的对齐方

#运算符
#也是预处理?是的,你可以这么认为。那怎么用它呢? 别急,先看下面例子:
#define SQR(x) printf("The square of x is %d. ", ((x)*(x)));
如果这样使用宏:
SQR(8);
则输出为:
The square of x is 64.
注意到没有,引号中的字符x 被当作普通文本来处理,而不是被当作一个可以被替换的语言
符号。
假如你确实希望在字符串中包含宏参数,那我们就可以使用“#”,它可以把语言符号转
化为字符串。上面的例子改一改:
#define SQR(x) printf("The square of "#x" is %d. ", ((x)*(x)));
再使用:
SQR(8);
则输出的是:
The square of 8 is 64.
很简单吧?相信你现在已经明白#号的使用方法了。
3.8,##预算符
和#运算符一样,##运算符可以用于宏函数的替换部分。这个运算符把两个语言符号组
合成单个语言符号。看例子:
#define XNAME(n) x ## n
如果这样使用宏:
XNAME(8)
则会被展开成这样:
x8
看明白了没?##就是个粘合剂,将前后两部分粘合起来。

原文地址:https://www.cnblogs.com/lvdongjie/p/6738682.html