RSA

一:费马小定理:假若 p为质数,a为任意正整数,那么 ap-a可被 p 整除

二:欧拉函数:假若 a与 n 互质,那么  aΦ(n)-1可被 n 整除。亦即,aΦ(n)≡1(mod n)

1:如果n=1,则 Φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。

2:如果n是质数,则 Φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。

3:如果n是质数的某一个次方,即 n = pk (p为质数,k为大于等于1的整数),则

  Φ(pk)=pk-pk-1

这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。

4:如果n可以分解成两个互质的整数之积,n = p1 × p2则Φ(n) = Φ(p1p2) = Φ(p1)Φ(p2)

即积的欧拉函数等于各个因子的欧拉函数之积。比如,Φ(56)=Φ(8×7)=Φ(8)×Φ(7)=4×6=24。

5:因为任意一个大于1的正整数,都可以写成一系列质数的积。

n=p1*p2*...pn

根据4可以得到:

Φ(n)=Φ(p1)*Φ(p2)*...Φ(pn)

根据3可以得到:

Φ(n)=(p1-1)*(p2-1)*...(pn-1)

三:欧拉定理

如果两个正整数a和n互质,则n的欧拉函数 φ(n) 可以让下面的等式成立:

aΦ(n)≡1(mod n)

四:模反元素

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

ab≡1(mod n)

五:扩展欧几里德算法

用类似辗转相除法,求二元一次不定方程47x+30y=1的整数解。

  • 47=30*1+17
  • 30=17*1+13
  • 17=13*1+4
  • 13=4*3+1

然后把它们改写成“余数等于”的形式

  • 17=47*1+30*(-1) //式1
  • 13=30*1+17*(-1) //式2
  • 4=17*1+13*(-1) //式3
  • 1=13*1+4*(-3)

然后把它们“倒回去”

  • 1=13*1+4*(-3) //应用式3
  • 1=13*1+[17*1+13*(-1)]*(-3)
  • 1=13*4+17*(-3) //应用式2
  • 1=[30*1+17*(-1)]*4+17*(-3)
  • 1=30*4+17*(-7) //应用式1
  • 1=30*4+[47*1+30*(-1)]*(-7)
  • 1=30*11+47*(-7)

得解x=-7, y=11。

六:密钥生成的步骤

1:随机选择两个不相等的质数p和q。

比如61和53。(实际应用中,这两个质数越大,就越难破解。)

2:计算p和q的乘积n。

n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

3:计算n的欧拉函数φ(n)

φ(n) = (p-1)(q-1)

φ(3233)等于60×52,即3120

4:随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质

就在1到3120之间,随机选择17。(实际应用中,常常选择65537。)

5:计算e对于φ(n)的模反元素d

就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

ed ≡ 1 (mod φ(n))

这个式子等价于

ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解

ex + φ(n)y = 1

已知 e=17, φ(n)=3120,代入

17x + 3120y = 1

这个方程可以用"扩展欧几里得算法"求解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

6:将n和e封装成公钥,n和d封装成私钥

n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)

七:RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

p q n φ(n) e d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

  (1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

  (2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

  (3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法

  "对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

  假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

  只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

  --from 维基百科

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解

  12301866845301177551304949
  58384962720772853569595334
  79219732245215172640050726
  36575187452021997864693899
  56474942774063845925192557
  32630345373154826850791702
  61221429134616704292143116
  02221240479274737794080665
  351419597459856902143413

它等于这样两个质数的乘积:

  33478071698956898786044169
  84821269081770479498371376
  85689124313889828837938780
  02287614711652531743087737
  814467999489
    ×
  36746043666799590428244633
  79962795263227915816434308
  76426760322838157396665112
  79233373417143396810270092
  798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八:加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓"加密",就是算出下式的c:

  me ≡ c (mod n)

公钥是 (3233, 17),m假设是65,那么可以算出下面的等式:

  6517 ≡ 2790 (mod 3233)

于是,c等于2790

(2)解密要用私钥(n,d)

用私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

  cd ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

  27902753 ≡ 65 (mod 3233)

因此加密前的原文就是65。

至此,"加密--解密"的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

  cd ≡ m (mod n)

因为,根据加密规则

  me ≡ c (mod n)

于是,c可以写成下面的形式:

  c = me - kn

将c代入要我们要证明的那个解密规则:

  (me - kn)d ≡ m (mod n)

(me - kn)d =med+d(me)i(-kn)(d-i)+(-kn)d   其中(1<i<d)

显然d(me)i(-kn)(d-i)+(-kn)d≡0(mod n)

因此,它等同于求证

  med ≡ m (mod n)

由于

  ed ≡ 1 (mod φ(n))

所以ed-1=hφ(n)

  ed = hφ(n)+1

将ed代入:

  mhφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

  mφ(n) ≡ 1 (mod n)

得到

  (mφ(n))h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则kp与q互斥,则根据欧拉定理,下面的式子成立:

  (kp)q-1 ≡ 1 (mod q)

进一步得到

  [(kp)q-1]h(p-1)  ≡ 1 (mod q),得到:

  [(kp)q-1]h(p-1) × kp ≡ kp (mod q)

  得到

  (kp)h(q-1)(p-1)+1  ≡ kp (mod q)

因为ed≡1(mod φ(n))即:ed-1=h(φ(n))

又φ(n)=(p-1)(q-1)

则:ed-1=h(p-1)(q-1)

即:ed=1+h(p-1)(q-1)

得到

  (kp)ed ≡ kp (mod q)

将它改写成下面的等式

  (kp)ed -kp = tq

  即

  (kp)ed = tq + kp

这时t必然能被p整除,即 t=t'p

  (kp)ed = t'pq + kp

因为 m=kp,n=pq,所以

  med=t'n+kp

  即

  med ≡ m (mod n)

原式得到证明。

转自http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html,又增加了一些详细证明步骤。

原文地址:https://www.cnblogs.com/javaleon/p/4295583.html