uboot的驱动模型理解

uboot的驱动模型,简称dm, 具体细节建议参考./doc/driver-model/README.txt
关于dm的三个概念:
uclass:一组同类型的devices,uclass为同一个group的device,提供一个相同的接口。比如:I2C、GPIO等
driver:上层的接口,英文原文解释是“some code which talks to a peripheral and presents a higher-level
    interface to it.”
device:driver的一个实例,绑定到一个具体的端口或者外设。(driver和device是不是可以类比于程序与进程,进程是程序的一个实例)
 
每一类uclass,需要在代码中用下面的方式来定义,以spi-uclass为例:
 
UCLASS_DRIVER(spi) = {
    .id        = UCLASS_SPI,
    .name        = "spi",
    .flags        = DM_UC_FLAG_SEQ_ALIAS,
    .post_bind    = spi_post_bind,
    .post_probe    = spi_post_probe,
    .child_pre_probe = spi_child_pre_probe,
    .per_device_auto_alloc_size = sizeof(struct dm_spi_bus),
    .per_child_auto_alloc_size = sizeof(struct spi_slave),
    .per_child_platdata_auto_alloc_size =
            sizeof(struct dm_spi_slave_platdata),
    .child_post_bind = spi_child_post_bind,
};
通过对宏定义UCLASS_DRIVER的展开
/* Declare a new uclass_driver */
#define UCLASS_DRIVER(__name)                        
    ll_entry_declare(struct uclass_driver, __name, uclass)
 
#define ll_entry_declare(_type, _name, _list)                
    _type _u_boot_list_2_##_list##_2_##_name __aligned(4)        
            __attribute__((unused,                
            section(".u_boot_list_2_"#_list"_2_"#_name)))
这样我们就能得到一个结构体, struct uclass_driver _u_boot_list_2_uclass_2_spi
并且存在 .u_boot_list_2_uclass_2_spi段。
但是我们如何通过ID UCLASS_SPI来找到对应的uclass结构体呢?
struct uclass_driver *lists_uclass_lookup(enum uclass_id id)
{
// 会根据.u_boot_list_2_uclass_1的段地址来得到uclass_driver table的地址
    struct uclass_driver *uclass =
        ll_entry_start(struct uclass_driver, uclass);
 
// 获得uclass_driver table的长度
    const int n_ents = ll_entry_count(struct uclass_driver, uclass);
    struct uclass_driver *entry;
 
    for (entry = uclass; entry != uclass + n_ents; entry++) {
        if (entry->id == id)
            return entry;
    }
 
    return NULL;
}
可以通过函数lists_uclass_lookup(enum uclass_id id)来查找。
 
另外,driver也是类似
/* Declare a new U-Boot driver */
#define U_BOOT_DRIVER(__name)                        
    ll_entry_declare(struct driver, __name, driver)
 
#define ll_entry_declare(_type, _name, _list)                
    _type _u_boot_list_2_##_list##_2_##_name __aligned(4)        
            __attribute__((unused,                
            section(".u_boot_list_2_"#_list"_2_"#_name)))
 
U_BOOT_DRIVER(tegra114_spi) = {
    .name    = "tegra114_spi",
    .id    = UCLASS_SPI,
    .of_match = tegra114_spi_ids,
    .ops    = &tegra114_spi_ops,
    .ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
    .platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
    .priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
    .probe    = tegra114_spi_probe,
};
这样我们就能得到一个结构体,
ll_entry_declare(struct driver, tegra114_spi, driver)
 
struct driver _u_boot_list_2_driver_2_tegra114_spi
                             __aligned(4)        
            __attribute__((unused,                
            section(".u_boot_list_2_driver_2_tegra114_spi")))
存储在段,.u_boot_list_2_driver_2_tegra114_spi
但是这些段,在uboot实际加载的时候,又是如何加载到链表中去的呢!
 
首先,还是初始化列表init_sequence_f里的函数initf_dm
static int initf_dm(void)
{
#if defined(CONFIG_DM) && defined(CONFIG_SYS_MALLOC_F_LEN)
    int ret;
 
    ret = dm_init_and_scan(true);
    if (ret)
        return ret;
#endif
#ifdef CONFIG_TIMER_EARLY
    ret = dm_timer_init();
    if (ret)
        return ret;
#endif
 
    return 0;
}
dm_init_and_scan(),代码分析如下
int dm_init_and_scan(bool pre_reloc_only)
{
    int ret;
 
    /*创建udevice和uclass空链表,创建根设备(root device)*/
    ret = dm_init();
    if (ret) {
        debug("dm_init() failed: %d
", ret);
        return ret;
    }
    /*扫描U_BOOT_DEVICE定义的设备,与U_BOOT_DRIVER定义的driver进行查找,并绑定相应driver*/
    ret = dm_scan_platdata(pre_reloc_only);
    if (ret) {
        debug("dm_scan_platdata() failed: %d
", ret);
        return ret;
    }
 
    if (CONFIG_IS_ENABLED(OF_CONTROL)) {
        /*扫描由FDT设备树文件定义的设备,与U_BOOT_DRIVER定义的driver进行查找,并绑定相应driver*/
        ret = dm_scan_fdt(gd->fdt_blob, pre_reloc_only);
        if (ret) {
            debug("dm_scan_fdt() failed: %d
", ret);
            return ret;
        }
    }
    ret = dm_scan_other(pre_reloc_only);
    if (ret)
        return ret;
 
    return 0;
}
分三个部分:
dm_init():创建udevice和uclass空链表,创建根设备(root device)
dm_scan_platdata():调用函数lists_bind_drivers,扫描U_BOOT_DEVICE定义的设备,与U_BOOT_DRIVER定义的driver进行查找,创建udevice,并绑定相应driver。
dm_scan_fdt():扫描由FDT设备树文件定义的设备,与U_BOOT_DRIVER定义的driver进行查找,创建udevice,并绑定相应driver。
int lists_bind_drivers(struct udevice *parent, bool pre_reloc_only)
{
    /*从分段,.u_boot_list_2_driver_info中来查找*/
    struct driver_info *info =
        ll_entry_start(struct driver_info, driver_info);
 
    const int n_ents = ll_entry_count(struct driver_info, driver_info);
    struct driver_info *entry;
    struct udevice *dev;
    int result = 0;
    int ret;
 
    for (entry = info; entry != info + n_ents; entry++) {
        /*将driver_info列表里面的name,依次与driver列表里面的名字,进行匹配查找,然后进行绑定*/
        ret = device_bind_by_name(parent, pre_reloc_only, entry, &dev);
        if (ret && ret != -EPERM) {
            dm_warn("No match for driver '%s'
", entry->name);
            if (!result || ret != -ENOENT)
                result = ret;
        }
    }
 
    return result;
}
 
int device_bind_by_name(struct udevice *parent, bool pre_reloc_only,
            const struct driver_info *info, struct udevice **devp)
{
    struct driver *drv;
 
    /*从driver list中查找info的名字*/
    drv = lists_driver_lookup_name(info->name);
    if (!drv)
        return -ENOENT;
    if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC))
        return -EPERM;
    
    /*创建udevice,绑定*/
    return device_bind(parent, drv, info->name, (void *)info->platdata,
               -1, devp);
}
U_BOOT_DEVICE的宏定义,注意与U_BOOT_DRIVER的区别:
 
#define U_BOOT_DEVICE(__name)                        
    ll_entry_declare(struct driver_info, __name, driver_info)
 
原文地址:https://www.cnblogs.com/djw316/p/10235492.html