从格点最短路模型谈起

从格点最短路模型谈起

模型

给定 (n imes n) 的格点,每个点带一个点权,允许向上下左右四个方向走,要求从 ((0, 0))((n - 1, n - 1)) 的最短距离(点权和最小)

(DP) 的困境

对于当前点 ((i, j)),可以由四个方向转移进来,然而在进行状态转移时,下面的位置 (dp[i + 1, j]) 还未做好决策,因此不满足无后效性,所以 (dp) 无法解决此模型

(Uniform cost search)

考虑用 (bfs) 结合 (priority queue) 实现,即 (UCS) 算法

注意,节点 (i) 只有在出队时,即离开 (close) 表时,才标记其为已访问,即加入 (open)

struct node
{
    int x, y, w;
    node() {}
    node(int _x, int _y, int _w): x(_x), y(_y), w(_w) {}
    bool operator < (const node& A) const {return w > A.w;}
};

class Solution1 // uniform cost search
{
public:
    bool check(int x, int y, int n);
    int uniformCostSearch(int n, vector<vector<int>>& cost);
    int exe(int n, vector<vector<int>>& cost);

};

bool Solution1::check(int x, int y, int n)
{
    return x >=0 && x < n && y >= 0 && y < n;
}

int Solution1::uniformCostSearch(int n, vector<vector<int>>& cost)
{
    int vis[n][n];
    memset(vis, 0, sizeof(vis));
    priority_queue<node> pq;
    pq.push(node(0, 0, cost[0][0]));
    while(!pq.empty()) {
        node temp = pq.top(); pq.pop();
        if(temp.x == n - 1 && temp.y == n - 1) return temp.w;
        if(!vis[temp.x][temp.y]) {
            vis[temp.x][temp.y] = 1;
            for(int k = 0; k < 4; ++k) {
                int tx = temp.x + DX[k], ty = temp.y + DY[k];
                if(!vis[tx][ty] && check(tx, ty, n))
                    pq.push(node(tx, ty, temp.w + cost[tx][ty]));
            }
        }
    }
    return 0;
}

int Solution1::exe(int n, vector<vector<int>>& cost)
{
    return uniformCostSearch(n, cost);
}

图论建模后 (dijkstra)

考虑图论建模,对于每一个点 ((i, j)),可以与 ((i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)) 连边,边权为 (cost[i - 1, j], cost[i + 1, j], cost[i, j - 1], cost[i, j + 1]),并且将 ((i, j)) 映射为 (i imes n + j),随后在新的图上跑 (dijkstra),最后统计答案时需要加上 (cost[0, 0])

为了打印路径,在每次决策时,用 (pre) 数组记录前继 ((predecessor)),逆序打印即可

class Solution2 // graph modeling + Dijkstra
{
public:
    Solution2();
    bool check(int x, int y, int n);
    void graphModeling(int n, vector<vector<int>>& cost);
    void printNewGraph(int n);
    int dijkstra(int s, int t, int n, int cost);
    int getShortestPath(int n, vector<vector<int>>& cost);
    void printShortestPath(int s, int t);

private:
    vector<pii> g[N];
    int pre[N], dis[N], vis[N];
    unordered_map<int, pii> mp;
};


Solution2::Solution2()
{
    memset(pre, 0, sizeof(pre));
    memset(dis, inf, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    mp.clear();
}
bool Solution2::check(int x, int y, int n)
{
    return x >= 0 && x < n && y >= 0 && y < n;
}
void Solution2::graphModeling(int n, vector<vector<int>>& cost)
{
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < n; ++j) {
            mp[i * n + j] = pii {i, j};
            for(int k = 0; k < 4; ++k) {
                int tx = i + DX[k], ty = j + DY[k];
                if(check(tx, ty, n)) g[i * n + j].pb(pii {tx * n + ty, cost[tx][ty]});
            }
        }
    }
}
void Solution2::printNewGraph(int n)
{
    /*Print the new graph*/
    cout << "The new graph is as follows" << endl;
    for(int i = 0; i < n * n; ++i) {
        cout << i << ": ";
        for(auto j: g[i]) cout << "(" << j.fi << ", " << j.se << ") ";
        puts("");
    }
    puts("");
}
int Solution2::dijkstra(int s, int t, int n, int cost)
{
    dis[s] = 0; vis[s] = 1;
    for(int i = 0; i < n * n; ++i){
        int mini = inf, u = 0;
        for(int j = 0; j < n * n; ++j)
            if(!vis[j] && dis[j] < mini) mini = dis[j], u = j;
        vis[u] = 1;
        for(auto i: g[u]){
            if(!vis[i.fi] && dis[u] + i.se < dis[i.fi]) {
                dis[i.fi] = min(dis[i.fi], dis[u] + i.se); // handle multiple edges
                pre[i.fi] = u; // record the predecessor
            }
        }
    }
    return cost + dis[t];
}
int Solution2::getShortestPath(int n, vector<vector<int>>& cost)
{
    graphModeling(n, cost);
    int ans = dijkstra(0, n * n - 1, n, cost[0][0]);
    return ans;
}
void Solution2::printShortestPath(int s, int t)
{
    stack<int> sta;
    sta.push(t);
    while(1) {
        int q = sta.top();
        sta.push(pre[q]);
        if(pre[q] == 0) break;
    }
    while(!sta.empty()) {
        cout << mp[sta.top()].fi << ' ' << mp[sta.top()].se << endl;
        sta.pop();
    }
}

整体代码

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define pb push_back
#define pii pair<int, int>
#define fi first
#define se second
using namespace std;

const int N = 1e3 + 7;
const int DX[] = {0, 1, 0, -1};
const int DY[] = {1, 0, -1, 0};

struct node
{
    int x, y, w;
    node() {}
    node(int _x, int _y, int _w): x(_x), y(_y), w(_w) {}
    bool operator < (const node& A) const {return w > A.w;}
};

class Solution1 // uniform cost search
{
public:
    bool check(int x, int y, int n);
    int uniformCostSearch(int n, vector<vector<int>>& cost);
    int exe(int n, vector<vector<int>>& cost);

};

bool Solution1::check(int x, int y, int n)
{
    return x >=0 && x < n && y >= 0 && y < n;
}

int Solution1::uniformCostSearch(int n, vector<vector<int>>& cost)
{
    int vis[n][n];
    memset(vis, 0, sizeof(vis));
    priority_queue<node> pq;
    pq.push(node(0, 0, cost[0][0]));
    while(!pq.empty()) {
        node temp = pq.top(); pq.pop();
        if(temp.x == n - 1 && temp.y == n - 1) return temp.w;
        if(!vis[temp.x][temp.y]) {
            vis[temp.x][temp.y] = 1;
            for(int k = 0; k < 4; ++k) {
                int tx = temp.x + DX[k], ty = temp.y + DY[k];
                if(!vis[tx][ty] && check(tx, ty, n))
                    pq.push(node(tx, ty, temp.w + cost[tx][ty]));
            }
        }
    }
    return 0;
}

int Solution1::exe(int n, vector<vector<int>>& cost)
{
    return uniformCostSearch(n, cost);
}


class Solution2 // graph modeling + Dijkstra
{
public:
    Solution2();
    bool check(int x, int y, int n);
    void graphModeling(int n, vector<vector<int>>& cost);
    void printNewGraph(int n);
    int dijkstra(int s, int t, int n, int cost);
    int getShortestPath(int n, vector<vector<int>>& cost);
    void printShortestPath(int s, int t);

private:
    vector<pii> g[N];
    int pre[N], dis[N], vis[N];
    unordered_map<int, pii> mp;
};


Solution2::Solution2()
{
    memset(pre, 0, sizeof(pre));
    memset(dis, inf, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    mp.clear();
}
bool Solution2::check(int x, int y, int n)
{
    return x >= 0 && x < n && y >= 0 && y < n;
}
void Solution2::graphModeling(int n, vector<vector<int>>& cost)
{
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < n; ++j) {
            mp[i * n + j] = pii {i, j};
            for(int k = 0; k < 4; ++k) {
                int tx = i + DX[k], ty = j + DY[k];
                if(check(tx, ty, n)) g[i * n + j].pb(pii {tx * n + ty, cost[tx][ty]});
            }
        }
    }
}
void Solution2::printNewGraph(int n)
{
    /*Print the new graph*/
    cout << "The new graph is as follows" << endl;
    for(int i = 0; i < n * n; ++i) {
        cout << i << ": ";
        for(auto j: g[i]) cout << "(" << j.fi << ", " << j.se << ") ";
        puts("");
    }
    puts("");
}
int Solution2::dijkstra(int s, int t, int n, int cost)
{
    dis[s] = 0; vis[s] = 1;
    for(int i = 0; i < n * n; ++i){
        int mini = inf, u = 0;
        for(int j = 0; j < n * n; ++j)
            if(!vis[j] && dis[j] < mini) mini = dis[j], u = j;
        vis[u] = 1;
        for(auto i: g[u]){
            if(!vis[i.fi] && dis[u] + i.se < dis[i.fi]) {
                dis[i.fi] = min(dis[i.fi], dis[u] + i.se); // handle multiple edges
                pre[i.fi] = u; // record the predecessor
            }
        }
    }
    return cost + dis[t];
}
int Solution2::getShortestPath(int n, vector<vector<int>>& cost)
{
    graphModeling(n, cost);
    int ans = dijkstra(0, n * n - 1, n, cost[0][0]);
    return ans;
}
void Solution2::printShortestPath(int s, int t)
{
    stack<int> sta;
    sta.push(t);
    while(1) {
        int q = sta.top();
        sta.push(pre[q]);
        if(pre[q] == 0) break;
    }
    while(!sta.empty()) {
        cout << mp[sta.top()].fi << ' ' << mp[sta.top()].se << endl;
        sta.pop();
    }
}

int main()
{
    int n;
    vector<vector<int>> cost(10, vector<int>(10, 0));
    cin >> n;
    for(int i = 0; i < n; ++i)
        for(int j = 0; j < n; ++j)
            cin >> cost[i][j];
    //Solution1 s1;
    //cout << s1.exe(n, cost) << endl;
    Solution2 s2;
    cout << s2.getShortestPath(n, cost) << endl;
    s2.printShortestPath(0, n * n - 1);
    return 0;
}
/*
5
1 999 6 10  11
2 999 7 999 12
3 999 8 999 13
5 999 7 999 14
4 5   9 999 10
*/
原文地址:https://www.cnblogs.com/ChenyangXu/p/14126824.html