IDisposable接口和析构函数

IDisposable接口和析构函数

其实这是一个老话题了,只是刚才做程序的时候突然发现自己有些概念有点模糊,所以做了一个测试如下:

这段代码是MSDN中的例子修改而来。

using System;
using System.ComponentModel;

// The following example demonstrates how to create
// a resource class that implements the IDisposable interface
// and the IDisposable.Dispose method.

public class DisposeExample
{

    
public class MyDisposableMember: IDisposable
    
{
        
private bool disposed = false;
        
private string info;

        
public MyDisposableMember(string _info)
        
{
            info 
= _info;
            System.Diagnostics.Debug.WriteLine(
"\tMyDisposableMember:" + info);
        }


        
public void Dispose()
        
{
            System.Diagnostics.Debug.WriteLine(
"\tDispose:" + info);
            Dispose(
true);
            GC.SuppressFinalize(
this);
        }


        
private void Dispose(bool disposing)
        
{
            
if(!this.disposed)
            
{
                
if(disposing)
                
{
                }

             
            }


            disposed 
= true;         
        }


        
~MyDisposableMember()      
        
{
            System.Diagnostics.Debug.WriteLine(
"\t~MyDisposableMember():" + info);
            Dispose(
false);
        }

    }




    
// A base class that implements IDisposable.
    
// By implementing IDisposable, you are announcing that 
    
// instances of this type allocate scarce resources.
    public class MyResource: IDisposable
    
{
        
// Track whether Dispose has been called.
        private bool disposed = false;
        
private string info;
        MyDisposableMember member;

        
// The class constructor.
        public MyResource(string _info)
        
{
            info 
= _info;
            System.Diagnostics.Debug.WriteLine(
"MyResource:" + info);
            member 
= new MyDisposableMember("member-" + _info);
        }


        
// Implement IDisposable.
        
// Do not make this method virtual.
        
// A derived class should not be able to override this method.
        public void Dispose()
        
{
            System.Diagnostics.Debug.WriteLine(
"Dispose:" + info);
            Dispose(
true);
            
// This object will be cleaned up by the Dispose method.
            
// Therefore, you should call GC.SupressFinalize to
            
// take this object off the finalization queue 
            
// and prevent finalization code for this object
            
// from executing a second time.
            GC.SuppressFinalize(this);
        }


        
// Dispose(bool disposing) executes in two distinct scenarios.
        
// If disposing equals true, the method has been called directly
        
// or indirectly by a user's code. Managed and unmanaged resources
        
// can be disposed.
        
// If disposing equals false, the method has been called by the 
        
// runtime from inside the finalizer and you should not reference 
        
// other objects. Only unmanaged resources can be disposed.
        private void Dispose(bool disposing)
        
{
            
if(!this.disposed)
            
{
                
// If disposing equals true, dispose all managed 
                
// and unmanaged resources.
                if(disposing)
                
{
                    
// Dispose managed resources.
                    member.Dispose();
                }

             
                
// Call the appropriate methods to clean up 
                
// unmanaged resources here.
                
// If disposing is false, 
                
// only the following code is executed.

                member 
= null;
            }


            disposed 
= true;         
        }


        
// Use C# destructor syntax for finalization code.
        
// This destructor will run only if the Dispose method 
        
// does not get called.
        
// It gives your base class the opportunity to finalize.
        
// Do not provide destructors in types derived from this class.
        ~MyResource()      
        
{
            
// Do not re-create Dispose clean-up code here.
            
// Calling Dispose(false) is optimal in terms of
            
// readability and maintainability.
            System.Diagnostics.Debug.WriteLine("~MyResource():" + info);
            Dispose(
false);
        }

    }

    
public static void Main()
    
{
        
// Insert code here to create
        
// and use the MyResource object.  
        MyResource mr = new MyResource("mr");
        mr.Dispose();

        
new MyResource("hang");

        
using(MyResource m = new MyResource("using"))
            System.Diagnostics.Debug.WriteLine(
"ready to exit using statement");

        System.GC.SuppressFinalize(mr);
    }


    
/*
    运行结果如下:
    
MyResource:mr
    MyDisposableMember:member-mr
Dispose:mr
    Dispose:member-mr
MyResource:hang
    MyDisposableMember:member-hang
MyResource:using
    MyDisposableMember:member-using
ready to exit using statement
Dispose:using
    Dispose:member-using
    ~MyDisposableMember():member-hang
~MyResource():hang

     
*/

}


从运行结果我们可以分析出如下的结果:

1。如果调用Dispose进行释放,则系统不会调用其析构函数
2。如果是系统自动释放的,则不会调用其Dispose函数,也就是说,.net垃圾收集器其实不认识 IDisposable接口。
3。在类析构过程中,会先释放其中的成员,最后再调用类的析构函数本身。

这里第3点需要说明一下,这是和C++中区别很大的地方,在C++中所有的释放都需要类的析构函数来进行,也就是在C++的析构函数中,所有的成员都是可用而且有效的。但是在C#中就会有区别了,因为C#的类析构函数调用之前,系统就会进行托管成员对象的清理工作。从生命周期的观点来看,类成员的生命周期必须包含在类的生命周期之内,C#这么做没有问题,但是问题时在于程序经常需要在析构函数中使用类的成员,所以就出现了异常情况:在析构函数中使用的类成员已经被析构了!也就是说,同样在析构函数范围内,C++包含的寓意是“析构=无效”,但是在C#的析构函数范围中,“析构 != 无效”。

由此,我们明白了为什么一些代码检查的软件会建议我们实现IDisposable时候,象例子中那样要自定义一个Dispose(bool disposing)了。

原文地址:https://www.cnblogs.com/BigTall/p/105553.html