SGU 438 The Glorious Karlutka River =) ★(动态+分层网络流)

题意】有一条东西向流淌的河,宽为W,河中有N块石头,每块石头的坐标(Xi, Yi)和最大承受人数Ci已知。现在有M个游客在河的南岸,他们想穿越这条河流,但是每个人每次最远只能跳D米,每跳一次耗时1秒。问他们能否全部穿越这条河流,如果能,最少需要多长时间。(0 <= N <= 50, 0 < M <= 50, 0 <= D <= 1000, 0 < W <= 1000, 0 < Xi < 1000, 0 < Yi < W, 0 <= Ci <= 1000) 非常好的题~分层图下的动态网络流~ 【思路因为每个节点(石头)不同时间点的状态不同,所以按时间构造分层图是必须的。每块石头在每个时间点都有一个点表示。并且由于节点容量限制,需要拆点i, i'连一条容量限制边。然后所有能从南岸跳到的石头,从源点向其各时间点处连边,容量为∞,再建一个超级源点连向源点,容量为人数。所有能跳到北岸的石头,从其各时间点处向汇点连边,容量为∞。任意两块距离小于等于D的石头,互相从t到t+1连边,容量为∞。 接下来便是怎么求最小时间。一开始我的做法是二分验证,但是超时了。。。看到Edelweiss大牛《网络流建模汇总》中用的方法是动态网络流。就是枚举时间,不断地往网络中加点表示当前时刻的石头,直到最大流等于总人数为止。这里的“动态”当然就是动态加边的意思。然后我想了想也就明白了,这道题时间最大也就可能是N+M=100,二分的优势并不明显,相反,因为它需要不断重新构造图,所以耗费了很多的时间。而动态网络流此时效率就比较高了~ 【总结】1.绿字部分        2.在遇到搜索答案+网络流验证的这种题目时,如果解区间较小,则用动态网络流效率高;如果解区间很大,便使用二分查找。  
#include 
#include 
#include 
#include 
#include 
#include 
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 10005;
const int MAXE = 2100005;
const int oo = 0x3fffffff;
struct node{
    int u, v, flow;
    int opp;
    int next;
};
struct Dinic{
    node arc[MAXE];
    int vn, en, head[MAXV];     //vn点个数(包括源点汇点),en边个数
    int cur[MAXV];              //当前弧
    int q[MAXV];                //bfs建层次图时的队列
    int path[MAXE], top;        //存dfs当前最短路径的栈
    int dep[MAXV];              //各节点层次
    void init(int n){
        vn = n;
        en = 0;
        mem(head, -1);
    }
    void insert_flow(int u, int v, int flow){
        arc[en].u = u;
        arc[en].v = v;
        arc[en].flow = flow;
        arc[en].opp = en + 1;
        arc[en].next = head[u];
        head[u] = en ++;

        arc[en].u = v;
        arc[en].v = u;
        arc[en].flow = 0;       //反向弧
        arc[en].opp = en - 1;
        arc[en].next = head[v];
        head[v] = en ++;
    }
    bool bfs(int s, int t){
        mem(dep, -1);
        int lq = 0, rq = 1;
        dep[s] = 0;
        q[lq] = s;
        while(lq < rq){
            int u = q[lq ++];
            if (u == t){
                return true;
            }
            for (int i = head[u]; i != -1; i = arc[i].next){
                int v = arc[i].v;
                if (dep[v] == -1 && arc[i].flow > 0){
                    dep[v] = dep[u] + 1;
                    q[rq ++] = v;
                }
            }
        }
        return false;
    }
    int solve(int s, int t){
        int maxflow = 0;
        while(bfs(s, t)){
            int i, j;
            for (i = 1; i <= vn; i ++)  cur[i] = head[i];
            for (i = s, top = 0;;){
                if (i == t){
                    int mink;
                    int minflow = 0x3fffffff;
                    for (int k = 0; k < top; k ++)
                        if (minflow > arc[path[k]].flow){
                            minflow = arc[path[k]].flow;
                            mink = k;
                        }
                    for (int k = 0; k < top; k ++)
                        arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
                    maxflow += minflow;
                    top = mink;		//arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
                    i = arc[path[top]].u;
                }
                for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
                    int v = arc[j].v;
                    if (arc[j].flow && dep[v] == dep[i] + 1)
                        break;
                }
                if (j != -1){
                    path[top ++] = j;
                    i = arc[j].v;
                }
                else{
                    if (top == 0)   break;
                    dep[i] = -1;
                    i = arc[path[-- top]].u;
                }
            }
        }
        return maxflow;
    }
}dinic;
struct piles{
    int x, y;
    int cap;
}p[55];
vector  reach[55];
vector  rs, rt;
void check_reach(int n, int d, int w){
    for (int i = 0; i <= n; i ++){
        reach[i].clear();
    }
    rs.clear();
    rt.clear();
    for (int i = 1; i <= n; i ++){
        if (p[i].y <= d)
            rs.push_back(i);
        if (p[i].y + d >= w)
            rt.push_back(i);
        for (int j = i + 1; j <= n; j ++){
            if (sqrt((p[j].x - p[i].x)*(p[j].x - p[i].x) + (p[j].y - p[i].y)*(p[j].y - p[i].y)) <= d){
                reach[i].push_back(j);
                reach[j].push_back(i);
            }
        }
    }
}
int main(){
	//freopen("test.in", "r", stdin);
	//freopen("test.out", "w", stdout);
    int n, m, d, w;
    scanf("%d %d %d %d", &n, &m, &d, &w);
    if (d >= w){
        puts("1");
        return 0;
    }
    for (int i = 1; i <= n; i ++){
        scanf("%d %d %d", &p[i].x, &p[i].y, &p[i].cap);
    }
    check_reach(n, d, w);
    int node_num = 2 * n * (n+m-1);
    dinic.init(node_num+3);
    dinic.insert_flow(node_num+3, node_num+1, m);
    int time, res = 0;
    for (time = 2; time <= n+m; time ++){
        for (int i = 0; i < (int)rs.size(); i ++){
            int stone = rs[i];
            dinic.insert_flow(node_num+1, (2*stone-2)*(n+m-1)+time-1, oo);
        }
        for (int i = 0; i < (int)rt.size(); i ++){
            int stone = rt[i];
            dinic.insert_flow((2*stone-1)*(n+m-1)+time-1, node_num+2, oo);
        }
        for (int i = 1; i <= n; i ++){
            dinic.insert_flow((2*i-2)*(n+m-1)+time-1, (2*i-1)*(n+m-1)+time-1, p[i].cap);
            for (int j = 0; j < (int)reach[i].size(); j ++){
                int stone = reach[i][j];
                dinic.insert_flow((2*i-1)*(n+m-1)+time-1, (2*stone-2)*(n+m-1)+time, oo);
            }
        }
        res += dinic.solve(node_num+3, node_num+2);
        //printf("%d %d
", time, res);
        if (res == m){
            break;
        }
    }
    if (time > n+m){
        puts("IMPOSSIBLE");
    }
    else{
        printf("%d
", time);
    }
	return 0;
}
原文地址:https://www.cnblogs.com/AbandonZHANG/p/4114047.html