面向对象-线程初识

线程

多线程是为了同步完成多项任务,不是为了提高运行效率,而是为了提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的

一个采用了多线程技术的应用程序可以更好地利用系统资源。其主要优势在于充分利用了CPU的空闲时间片,可以用尽可能少的时间来对用户的要求做出响应,使得进程的整体运行效率得到较大提高,同时增强了应用程序的灵活性。更为重要的是,由于同一进程的所有线程是共享同一内存,所以不需要特殊的数据传送机制,不需要建立共享存储区或共享文件,从而使得不同任务之间的协调操作与运行、数据的交互、资源的分配等问题更加易于解决。

多线程是多任务的一种特别的形式,但多线程使用了更小的资源开销。

线程的生命周期

  • 新建状态:

使用 new 关键字和 Thread 类或其子类建立一个线程对象后,该线程对象就处于新建状态。它保持这个状态直到程序 start() 这个线程。

  • 就绪状态:

当线程对象调用了start()方法之后,该线程就进入就绪状态。就绪状态的线程处于就绪队列中,要等待JVM里线程调度器的调度。

  • 运行状态:

如果就绪状态的线程获取 CPU 资源,就可以执行 run(),此时线程便处于运行状态。处于运行状态的线程最为复杂,它可以变为阻塞状态、就绪状态和死亡状态。

  • 阻塞状态:

如果一个线程执行了sleep(睡眠)、suspend(挂起)等方法,失去所占用资源之后,该线程就从运行状态进入阻塞状态。在睡眠时间已到或获得设备资源后可以重新进入就绪状态。可以分为三种:

    • 等待阻塞:运行状态中的线程执行 wait() 方法,使线程进入到等待阻塞状态。

    • 同步阻塞:线程在获取 synchronized 同步锁失败(因为同步锁被其他线程占用)。

    • 其他阻塞:通过调用线程的 sleep() 或 join() 发出了 I/O 请求时,线程就会进入到阻塞状态。当sleep() 状态超时,join() 等待线程终止或超时,或者 I/O 处理完毕,线程重新转入就绪状态。

  • 死亡状态:

一个运行状态的线程完成任务或者其他终止条件发生时,该线程就切换到终止状态。

线程的优先级

每一个 Java 线程都有一个优先级,这样有助于操作系统确定线程的调度顺序。

Java 线程的优先级是一个整数,其取值范围是 1 (Thread.MIN_PRIORITY ) - 10 (Thread.MAX_PRIORITY )。

默认情况下,每一个线程都会分配一个优先级 NORM_PRIORITY(5)。

具有较高优先级的线程对程序更重要,并且应该在低优先级的线程之前分配处理器资源。但是,线程优先级不能保证线程执行的顺序,而且非常依赖于平台。

创建一个线程

Java 提供了三种创建线程的方法:

通过实现 Runnable 接口;

实现runnable接口:

public class RunnableDemo implements Runnable { private Thread t;//创建了一个线程引用 private String threadName;//线程名 public RunnableDemo(String name) {//构造线程时为进程命名 // TODO Auto-generated constructor stub threadName=name; System.out.println("线程的构造函数创建了一个名为"+threadName+"的线程"); } @Override public void run() {//实现接口方法,运行线程 /** * run方法自动运行 * 运行进程包括就绪阻塞死亡状态 */ System.out.println("开始执行线程");try { System.out.println("阻塞线程");t.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public void start() { if(t==null) { t=new Thread(this,threadName);//为线程引用创建指向对象 t.start(); System.out.println("线程启动");} } }

@Test void test5() { RunnableDemo runnableDemo=new RunnableDemo("线程1"); runnableDemo.start(); }

通过继承 Thread 类本身;

thread也是实现了Runnable接口方法

class Thread implements Runnable { /* Make sure registerNatives is the first thing <clinit> does. */ private static native void registerNatives(); static { registerNatives(); ……

Thread方法

1public void start()

使该线程开始执行;Java 虚拟机调用该线程的 run 方法。

2public void run()

如果该线程是使用独立的 Runnable 运行对象构造的,则调用该 Runnable 对象的 run 方法;否则,该方法不执行任何操作并返回。

3public final void setName(String name)

改变线程名称,使之与参数 name 相同。

4public final void setPriority(int priority)

更改线程的优先级。

5public final void setDaemon(boolean on)

将该线程标记为守护线程或用户线程。

6public final void join(long millisec)

等待该线程终止的时间最长为 millis 毫秒。

7public void interrupt()

中断线程。

8public final boolean isAlive()

测试线程是否处于活动状态。

下面的方法是Thread类的静态方法。

序号方法描述

1public static void yield()

暂停当前正在执行的线程对象,并执行其他线程。

2public static void sleep(long millisec)

在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操作受到系统计时器和调度程序精度和准确性的影响。

3public static boolean holdsLock(Object x)

当且仅当当前线程在指定的对象上保持监视器锁时,才返回 true。

4public static Thread currentThread()

返回对当前正在执行的线程对象的引用。

5public static void dumpStack()

将当前线程的堆栈跟踪打印至标准错误流。

通过 Callable 和 Future 创建线程。

  • 1. 创建 Callable 接口的实现类,并实现 call() 方法,该 call() 方法将作为线程执行体,并且有返回值。

  • 2. 创建 Callable 实现类的实例,使用 FutureTask 类来包装 Callable 对象,该 FutureTask 对象封装了该 Callable 对象的 call() 方法的返回值。

  • 3. 使用 FutureTask 对象作为 Thread 对象的 target 创建并启动新线程。

  • 4. 调用 FutureTask 对象的 get() 方法来获得子线程执行结束后的返回值。

public class CallableThreadTest implements Callable<Integer> { public static void main(String[] args) { CallableThreadTest ctt = new CallableThreadTest(); FutureTask<Integer> ft = new FutureTask<>(ctt); for(int i = 0;i < 100;i++) { System.out.println(Thread.currentThread().getName()+" 的循环变量i的值"+i); if(i==20) { new Thread(ft,"有返回值的线程").start(); } } try { System.out.println("子线程的返回值:"+ft.get()); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } @Override public Integer call() throws Exception { int i = 0; for(;i<100;i++) { System.out.println(Thread.currentThread().getName()+" "+i); } return i; } }

创建线程的三种方式的对比

  • 1. 采用实现 Runnable、Callable 接口的方式创建多线程时,线程类只是实现了 Runnable 接口或 Callable 接口,还可以继承其他类。

  • 2. 使用继承 Thread 类的方式创建多线程时,编写简单,如果需要访问当前线程,则无需使用 Thread.currentThread() 方法,直接使用 this 即可获得当前线程。

线程的几个主要概念

在多线程编程时,你需要了解以下几个概念:

  • 线程同步

  • 线程间通信

  • 线程死锁

  • 线程控制:挂起、停止和恢复

多线程的使用

有效利用多线程的关键是理解程序是并发执行而不是串行执行的。例如:程序中有两个子系统需要并发执行,这时候就需要利用多线程编程。

通过对多线程的使用,可以编写出非常高效的程序。不过请注意,如果你创建太多的线程,程序执行的效率实际上是降低了,而不是提升了。

请记住,上下文的切换开销也很重要,如果你创建了太多的线程,CPU 花费在上下文的切换的时间将多于执行程序的时间!

原文地址:https://www.cnblogs.com/1605-3QYL/p/12491864.html