文献阅读

Reference models results were obtained with data from
Table 1. This test was carried out by varying the cutting
speed (v) from 200 m·min-1 to 600 m·min-1, in steps of
100m·min-1, in order to appreciate the transition from
continuous chip to serrated chip

equivalent
plastic strain等效塑性应变



As a conclusion, it can be seen
that materials with low conductivity (i.e. titanium alloys)
have a big tendency to create serrated chip, while those
with a high conductivity (i.e. aluminium alloys) will
produce a continuous chip, which matches pretty well
with experimental results observed in other research
works

由此可见,电导率低的材料(如钛合金)产生锯齿状切屑的倾向较大,而电导率高的材料(如铝合金)则会产生连续切屑,这与其他研究工作中的实验结果吻合得很好

Again, the lower specific heat value disallows
heat dissipation which promotes the temperature increase
in the material and its failure by adiabatic shearing.

同样,较低的热值不允许散热,这促进了材料的温度上升,并通过绝热剪切破坏。(比热)

Figure 5 shows the segmentation ratio for the inelastic
heat fraction (β). As it can be observed, a high value in
the inelastic heat fraction (β) tends to create serrated chip
at lower cutting speeds

图5显示了非弹性热分数(β)的分段比。可以观察到,高的非弹性热分数(β)倾向于在较低的切削速度下产生锯齿状切屑

The higher yield stress values
produce higher amount of heat for the same strain, and a
lower chip thickness, which promotes the temperature
increase in the material

jc本构中的A(屈服应力)影响:分段比几乎为零。在相同应变条件下,较高的屈服应力值会产生较高的热量,而较低的切屑厚度会促进材料的温升

硬化模量(B系数)对于高值(B=1092 MPa),在较低的切削速度下,锯齿状切屑得到促进。但在较低值(B=426 MPa)时,在较高的切削速度(v=500m·min-1)下可获得锯齿形切屑

从图8中可以看出,当n(硬化系数)系数增大时,产生锯齿状切屑的趋势减小

“C”系数值相差不大。随着“C”系数的增加,在较低的切削速度下,产生锯齿状切屑的趋势开始出现。

热软化系数“m”是对锯齿切屑影响较小的系数,至少在已研究的界限之间是如此。从图10可以看出,在高切削速度下,“m”系数越小,锯齿状切屑越多。

在Johnson-Cook本构方程中,m的增加会提高屈服应力值(保持温度和塑性应变恒定)。但与系数n一样,当系数m增大时,切屑厚度也会增大,从而使主剪切力/切屑厚度之比增大

几乎所有参数对锯齿形切屑的形成都有显著影响,其中影响较小的参数为热软化m和非弹性热分数β

原文地址:https://www.cnblogs.com/zyq982796687/p/14710523.html