TensorFlow 学习(2)——正式起步

学习TensorFlow官方文档中文版 http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/basic_usage.html

一.基本使用

TensorFlow的基本特点:

1. 使用图(graph)来表示计算任务

2.在被称之为会话(session)的上下文(context)中执行图

3.使用tensor来表示数据

4.通过变量(variable)来维护状态

5.使用feed和fetch可以为任意的操作(arbitrary operation)赋值或者从其中获取数据

综述

TensorFlow使用图来表示计算任务,图中的节点称为op(operation)。一个op获得0个或多个tensor,执行计算,产生0个或多个tensor。每个tensor是一个类型化的多维数组。例如,你可以将一小组图像集表示为一个思维浮点数数组,如[batch,height,width,channels]

一个图描述了计算的过程。为了进行计算,图必须在会话中启动。会话将图的op分发到诸如CPU或GPU之类的设备上,同时执行op的方法。这些方法执行后,将产生的tensor返回。在python中,返回的tensorしnumpy ndarray对象。

计算图

TensorFlow一般组织成两个阶段:构建阶段和执行阶段。构建阶段中op的执行步骤被描述成一个图。在执行阶段,使用会话执行图中的op。典型的例子是,在构建阶段创建一张图来表示ヘ训练神经网络,然后在执行阶段反复执行图中的训练op

构建图

构建图的第一步,是创建源op(source op),它不需要任何输入。典型的op例如常量(constan)。其输出被传递给其它op做运算(就是神经网路的输入层?)

python中,op构造器的返回值代表被构造出的op的输出,这些返回值可以传递给其它op构造器作为输入

TensorFlow python库中有一个默认图,op构造器可以为其增加节点。这个默认图对于许多程序来说已经足够使用了。当然也可以管理多个图。

#!/usr/bin/env python

import os
os.environ['TF_CPP_MIN_LOG+LEVEL'] = '2'
import tensorflow as tf

# 构建阶段
# 构建一个常量op,是一个1*2矩阵,该op被作为一个节点加到默认图中
matrix1 = tf.constant([[3.,3.]])

# 再构建一个常量op,这次是一个2*1矩阵
matrix2 = tf.constant([[2.],[2.]])

# 构建一个矩阵乘法matmul op,将前两个常量作为输入,返回值product代表矩阵乘法的结果
product = tf.matmul(matrix1,matrix2)

这样就在默认图中设置了3个节点,前两个为输入的constant节点,后一个为matmul节点。然而到这里执行程序并没有进行真正的矩阵相乘运算,为了得到真正进行矩阵相乘运算的结果,必须在后来的会话中启动这个图

在一个会话中启动会图

构造阶段完成后,就能够启动图。启动图的第一步是创建一个Session对象,如果无任何创建参数,会话构造器将启动默认图。

#运行阶段
#启动默认图
sess = tf.Session()

# 调用sess的run方法来执行构建的矩阵乘法op,传入produ作为该方法的参数,是为了表明我们希望取回矩阵乘法op的输出
# 整个执行是自动化的,会话负责传递op所需的全部输入,op通常是并发执行的
# 返回值result是一个numpy‘ndarray’对象
result = sess.run(product)
print(result)
#[[12.]]

sess.close()#任务完成关闭对话

另外也可以使用with语句来自动完成关闭操作

 with tf.Session() as sess:
  result = sess.run([product])
  print(result)

这样的输出为[array([[12.]], dtype=float32)]

在具体实现上,tensorf将图形定义转换为分布式执行的操作,以充分利用可以利用的系统资源(CPU,GPU等)。一般不需要显示指定使用CPU或GPU,TensorFlow在检测到GPU后悔尽可能利用找到的第一个GPU来进行操作。

如果机器上有多块GPU,除第一块以外其他的GPU默认是不工作的。如果想把它们利用起来,需要将op明确的指派给它们执行:

  with tf.Session() as sess:

    with tf.device("/gpu:1"):

      matrix1 = tf.constant([[3., 3.]])

      matrix2 = tf.constant([[2.],[2.]])

      product = tf.matmul(matrix1, matrix2)

      .....

设备号用字符串标示。支持的设备包括:

‘/cpu:0’:机器的CPU

'/gpu:0'机器的第一个GPU,如果有的话

‘/gpu:1’第二块GPU 以此类推

交互式使用

对于交互式使用环境(IPython),可以使用InteractiveSession代替Session类,使用Tensor.eval()和Operation.run()方法来代替Session.run()。这样可以避免使用一个变量来持有会话。

#!/usr/bin/env python

import os
os.environ['TF_CPP_MIN_LOG+LEVEL'] = '2'
import tensorflow as tf

# 进入一个交互式会话
sess = tf.InteractiveSession()

x = tf.Variable([1.0,2.0])
a = tf.constant([3.0,3.0])

# 使用初始化其initializer op 的run()方法来初始化‘x''
x.initializer.run()

sub = tf.subtract(x,a)
print(sub.eval())

Tensor

tensor数据结构用来代表所有格的数据,计算图中,操作间传递的数据都是tensor,你可以把他看做一个n维的数组或列表,一个tensor包含一个静态类型rank,和一个shape

变量Variable

变量维护图执行过程中 的状态信息。下面的例子将展示如何使用变量来生成一个简单的计数器

#!/usr/bin/env python

import os
os.environ['TF_CPP_MIN_LOG+LEVEL'] = '2'
import tensorflow as tf

# 创建一个变量,初始化为0
state = tf.Variable(0,name='counter')

# 创建一个op,其作用是使state增加1
one = tf.constant(1)
new_value = tf.add(state,one)
update = tf.assign(state,new_value)

# 启动图后,变量必须先经过'初始化'op 初始化
init_op = tf.initialize_all_variables()

# 启动图,运行op
with tf.Session() as sess:
# 运行init op
sess.run(init_op)

# 打印‘state’的初始值
print(sess.run(state))

# 运行op,更新state,并打印state
for _ in range(3):
sess.run(update)
print(sess.run(state))

代码assign()和add()一样,在调用run()执行表达式之前,它并不会真正的执行赋值操作

通常会将一个统计模型中的参数表示为一组变量,例如,可以把一个神经网络的权重作为某个变量存储在tensor中。在训练过程中,通过重复的运行训练图来更新这个tensor

Fetch

为了取回操作的输出内容,可以在Session对象run()的调用执行图时,传入一些tensor,这些tensor会帮你取回结果。在之前的例子中,我们只取回了单个节点state,但是也可以取回多个tensor:

#!/usr/bin/env python

import os
os.environ['TF_CPP_MIN_LOG+LEVEL'] = '2'
import tensorflow as tf

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2,input3)
mul = tf.multiply(input1,intermed)

with tf.Session() as sess:
result = sess.run([mul,intermed])
print(result)

Feed

上述实例在计算图中引入了tensor,以常量或变量形式存储。TensorFlow还提供了feed机制,该机制可以临时替代图中任意操作中的tensor可以对图中任何操作提交补丁,直接插入一个tensor。

feed使用一个tensor值临时替换一个操作的输出结果。你可以提供feed数据作为run()调用的参数。feed只在调用它的方法内有效,方法结束,feed就会消失。最常见的用例是建构写特殊的操作指定为feed操作,标记的方法是使用tf.palceholder()为这些操作创建占位符

#!/usr/bin/env python

import os
os.environ['TF_CPP_MIN_LOG+LEVEL'] = '2'
import tensorflow as tf

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)

output = tf.multiply(input1,input2)

with tf.Session() as sess:
print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))

最后一步中,如果没有正确提供feed,placeholder将会报错

原文地址:https://www.cnblogs.com/zodiac7/p/9300207.html