(填坑系列) 用aio写server与client进行通信的坑

  最近闲来无事,就估摸着自己写个“服务注册中心”来玩,当然因为是个人写的,所以一般都是简洁版本。

  代码地址在:https://gitee.com/zhxs_code/my-service-register.git

  

  由于在处理与网络数据时,为了性能,想到用AIO来实验,结果发现AIO整个思路与之前的BIO,NIO都不一样。导致出现一些深坑,在此记录一下。

  (一)  AIO写的server端与client端,只能通信一次。

    上代码:

    server端部分:

    

 1 public class RegisterServer {
 2 
 3 
 4     // 静态初始化 eventProcess
 5     private  EventProcess eventProcess=new EventProcess();
 6 
 7     public  AsynchronousServerSocketChannel serverSocketChannel=null;
 8 
 9     public AsynchronousServerSocketChannel getSocketChannel(){
10         return serverSocketChannel;
11     }
12 
13     RegisterServer() throws InterruptedException, ExecutionException, IOException {
14         start();
15     }
16 
17     public static void main(String[] args) throws InterruptedException, IOException, ExecutionException {
18         new RegisterServer();
19 
20     }
21 
22     public  void start() throws ExecutionException, InterruptedException, IOException {
23         // 创建一个对象
24         serverSocketChannel = AsynchronousServerSocketChannel.open();
25         // 绑定端口
26         serverSocketChannel.bind(new InetSocketAddress(RegisterServerConfig.getInstance().getPort()));
27         System.out.println("---------  Register Server Started !  ---------  ");
28         System.out.println("---------  Register Server bind port :  [" + RegisterServerConfig.getInstance().getPort() + "]  --------------");
29 
30         // 心跳检测
31         ServerSchedule.checkClientHeartBeat();
32         serverSocketChannel.accept(this,new AcceptCompletionHandler());
33 
34     }
35 
36 }
public class AcceptCompletionHandler implements CompletionHandler<AsynchronousSocketChannel,RegisterServer> {
    @Override
    public void completed(AsynchronousSocketChannel socketChannel, RegisterServer attachment) {
        // 处理下一次链接,类似链式调用
        attachment.getSocketChannel().accept(attachment,this);
        ByteBuffer buffer=ByteBuffer.allocate(1024);
        socketChannel.read(buffer,buffer,new ReadCompletionHandler(socketChannel,new AnalyticalMsg()));
    }

    @Override
    public void failed(Throwable throwable, RegisterServer registerServer) {
        throwable.printStackTrace();
    }

}
public class ReadCompletionHandler implements CompletionHandler<Integer, ByteBuffer> {

    private AsynchronousSocketChannel socketChannel;

    // 业务处理函数
    private BusinessFun businessFun;

    ReadCompletionHandler(AsynchronousSocketChannel socketChannel) {
        if (this.socketChannel == null) {
            this.socketChannel = socketChannel;
        }
    }

    ReadCompletionHandler(AsynchronousSocketChannel socketChannel,BusinessFun businessFun) {
        if (this.socketChannel == null) {
            this.socketChannel = socketChannel;
        }
        if(this.businessFun==null){
            this.businessFun=businessFun;
        }
    }

    @Override
    public void completed(Integer result, ByteBuffer attachment) {
        if(result<0){
            System.err.println(" ReadCompletionHandler completed() result < 0 !!!!  ");
            return;
        }
        attachment.flip();
        byte[] buffer = new byte[attachment.remaining()];
        attachment.get(buffer);
        String content = new String(buffer, StandardCharsets.UTF_8);
        System.out.println("received : " + content);
        // 处理业务
        businessFun.doSomeThing(socketChannel,content);
        attachment.clear();
        // 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
        // -------------  重要 -------------------
        socketChannel.read(attachment,attachment,this);
    }

    @Override
    public void failed(Throwable throwable, ByteBuffer attachment) {
        try {
            throwable.printStackTrace();
            System.err.println(" socket cloesd :  "+socketChannel.getRemoteAddress());
            socketChannel.close();
        } catch (IOException e) {
            e.printStackTrace();
        }

    }

}

    以上就是server端的大部分核心代码。aio提供了两种处理各种操作的方式:future , handler., 拿accept操作为例:

    AsynchronousServerSocketChannel 提供了accept两种的两种api

    

      一种返回值类型为future,另一种形参列表里传入了一个CompletionHandler。

      官方的注释其实说明了两种api的特点,我归纳一下:

        用future的方式,意思是实际什么时候触发并不清楚,要拿到操作结果,就要调用future.get( ) 方法,但是get( ) 是阻塞的,所以和我们的初衷“异步非阻塞”其实就相违背了,所以我没采用future的方式。

        handler方式其实是一个接口,将接口当做参数传入进去,实际是要自己实现该接口,然后覆写里面的complete () , faile( ) 方法的。complete方法是当底层对accpet的准备工作做完并且成功以后就会调用complete(),反之调用fail(), 那么我们可以在覆写complete()方式时实现自己的逻辑。handler是完全异步非阻塞的,不需要像future方式那样通过调用get()方式来触发。举例来说明一下,假如有个client发送了一个accpet的请求到server端,当server端接收到这个请求之后,会自动调用handler中覆写的complete和fail来实现业务逻辑。看着好像挺神奇,其实原理是底层创建了一个默认的线程池来处理这些操作。因为有另一个线程来处理,所以handler的处理方式是异步非阻塞的,因为不会阻塞当前线程。

      那么为什么client与server只能通信一次了?

      只能通信一次的场景我就不贴图了,有兴趣的同学可以百度aio写server的代码,试着运行一下就知道了。

      解决方案是在上面的 ReadCompletionHandler 中的 completed()方法中最后一句

  @Override
    public void completed(Integer result, ByteBuffer attachment) {
        if(result<0){
            System.err.println(" ReadCompletionHandler completed() result < 0 !!!!  ");
            return;
        }
        attachment.flip();
        byte[] buffer = new byte[attachment.remaining()];
        attachment.get(buffer);
        String content = new String(buffer, StandardCharsets.UTF_8);
        System.out.println("received : " + content);
        // 处理业务
        businessFun.doSomeThing(socketChannel,content);
        attachment.clear();
        // 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
        // -------------  重要 -------------------
        socketChannel.read(attachment,attachment,this);
    }

    我的注释已经写的很清楚了,那么为什么要这么写的原因了,这个就和aio的底层实现有关。之前已经说过aio其实是创建了一个默认线程池来处理所有操作

    看源码:

AsynchronousServerSocketChannel.open()

  

 public static AsynchronousServerSocketChannel open()
        throws IOException
    {
        return open(null);
    }
 public static AsynchronousServerSocketChannel open(AsynchronousChannelGroup group)
        throws IOException
    {
        AsynchronousChannelProvider provider = (group == null) ?
            AsynchronousChannelProvider.provider() : group.provider();
        return provider.openAsynchronousServerSocketChannel(group);
    }
public AsynchronousServerSocketChannel openAsynchronousServerSocketChannel(AsynchronousChannelGroup var1) throws IOException {
        return new UnixAsynchronousServerSocketChannelImpl(this.toPort(var1));
    }
 private Port toPort(AsynchronousChannelGroup var1) throws IOException {
        if (var1 == null) {
            return this.defaultEventPort();
        } else if (!(var1 instanceof KQueuePort)) {
            throw new IllegalChannelGroupException();
        } else {
            return (Port)var1;
        }
    }
    private KQueuePort defaultEventPort() throws IOException {
        if (defaultPort == null) {
            Class var1 = BsdAsynchronousChannelProvider.class;
            synchronized(BsdAsynchronousChannelProvider.class) {
                if (defaultPort == null) {
                    defaultPort = (new KQueuePort(this, ThreadPool.getDefault())).start();
                }
            }
        }

        return defaultPort;
    }

  创建一个KQueuePort对象,KQueuePort是继承的Port .  KQueuePort就是 aio中对端口抽象的一种具体实现, 并且还传入了一个默认的线程池。

final class KQueuePort extends Port {
    private static final int MAX_KEVENTS_TO_POLL = 512;
    private final int kqfd = KQueue.kqueue();
    private boolean closed;
    private final int[] sp;
    private final AtomicInteger wakeupCount = new AtomicInteger();
    private final long address;
    private final ArrayBlockingQueue<KQueuePort.Event> queue;
    private final KQueuePort.Event NEED_TO_POLL = new KQueuePort.Event((PollableChannel)null, 0);
    private final KQueuePort.Event EXECUTE_TASK_OR_SHUTDOWN = new KQueuePort.Event((PollableChannel)null, 0);

    KQueuePort(AsynchronousChannelProvider var1, ThreadPool var2) throws IOException {
        super(var1, var2);
        int[] var3 = new int[2];

        try {
            socketpair(var3);
            KQueue.keventRegister(this.kqfd, var3[0], -1, 1);
        } catch (IOException var5) {
            close0(this.kqfd);
            throw var5;
        }

        this.sp = var3;
        this.address = KQueue.allocatePollArray(512);
        this.queue = new ArrayBlockingQueue(512);
        this.queue.offer(this.NEED_TO_POLL);
    }

  KQueuePort的构造方法 创建了一个 阻塞队列 queue, 这个队列里面存储的就是通过端口传递过来的各种事件(Event),然后会进入 start方法:

KQueuePort start() {
        this.startThreads(new KQueuePort.EventHandlerTask());
        return this;
    }

protected final void startThreads(Runnable var1) {
int var2;
if (!this.isFixedThreadPool()) {
for(var2 = 0; var2 < internalThreadCount; ++var2) {
this.startInternalThread(var1);
this.threadCount.incrementAndGet();
}
}

if (this.pool.poolSize() > 0) {
var1 = this.bindToGroup(var1);

try {
for(var2 = 0; var2 < this.pool.poolSize(); ++var2) {
this.pool.executor().execute(var1);
this.threadCount.incrementAndGet();
}
} catch (RejectedExecutionException var3) {
;
}
}


 上面就是判断线程池的大小,然后用线程池里的线程来处理传入的runnable,而这个runnable实际是上面生成的 EventHandlerTask ,  这个EventHandlerTask 实现了Runnable接口:

private class EventHandlerTask implements Runnable {
        private EventHandlerTask() {
        }

        private KQueuePort.Event poll() throws IOException {
            try {
                while(true) {
                    int var1 = KQueue.keventPoll(KQueuePort.this.kqfd, KQueuePort.this.address, 512);
                    KQueuePort.this.fdToChannelLock.readLock().lock();

                    try {
                        while(var1-- > 0) {
                            long var2 = KQueue.getEvent(KQueuePort.this.address, var1);
                            int var4 = KQueue.getDescriptor(var2);
                            Object var5;
                            if (var4 == KQueuePort.this.sp[0]) {
                                if (KQueuePort.this.wakeupCount.decrementAndGet() == 0) {
                                    KQueuePort.drain1(KQueuePort.this.sp[0]);
                                }

                                if (var1 <= 0) {
                                    var5 = KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN;
                                    return (KQueuePort.Event)var5;
                                }

                                KQueuePort.this.queue.offer(KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN);
                            } else {
                                var5 = (PollableChannel)KQueuePort.this.fdToChannel.get(var4);
                                if (var5 != null) {
                                    int var6 = KQueue.getFilter(var2);
                                    short var7 = 0;
                                    if (var6 == -1) {
                                        var7 = Net.POLLIN;
                                    } else if (var6 == -2) {
                                        var7 = Net.POLLOUT;
                                    }

                                    KQueuePort.Event var8 = new KQueuePort.Event((PollableChannel)var5, var7);
                                    if (var1 <= 0) {
                                        KQueuePort.Event var9 = var8;
                                        return var9;
                                    }

                                    KQueuePort.this.queue.offer(var8);
                                }
                            }
                        }
                    } finally {
                        KQueuePort.this.fdToChannelLock.readLock().unlock();
                    }
                }
            } finally {
                KQueuePort.this.queue.offer(KQueuePort.this.NEED_TO_POLL);
            }
        }

        public void run() {
            GroupAndInvokeCount var1 = Invoker.getGroupAndInvokeCount();
            boolean var2 = var1 != null;
            boolean var3 = false;

            int var6;
            while(true) {
                boolean var14 = false;

                try {
                    label151: {
                        var14 = true;
                        if (var2) {
                            var1.resetInvokeCount();
                        }

                        KQueuePort.Event var4;
                        try {
                            var3 = false;
                            var4 = (KQueuePort.Event)KQueuePort.this.queue.take();
                            if (var4 == KQueuePort.this.NEED_TO_POLL) {
                                try {
                                    var4 = this.poll();
                                } catch (IOException var17) {
                                    var17.printStackTrace();
                                    var14 = false;
                                    break label151;
                                }
                            }
                        } catch (InterruptedException var18) {
                            continue;
                        }

                        if (var4 == KQueuePort.this.EXECUTE_TASK_OR_SHUTDOWN) {
                            Runnable var5 = KQueuePort.this.pollTask();
                            if (var5 == null) {
                                var14 = false;
                                break;
                            }

                            var3 = true;
                            var5.run();
                            continue;
                        }

                        try {
                            var4.channel().onEvent(var4.events(), var2);
                            continue;
                        } catch (Error var15) {
                            var3 = true;
                            throw var15;
                        } catch (RuntimeException var16) {
                            var3 = true;
                            throw var16;
                        }
                    }
                } finally {
                    if (var14) {
                        int var8 = KQueuePort.this.threadExit(this, var3);
                        if (var8 == 0 && KQueuePort.this.isShutdown()) {
                            KQueuePort.this.implClose();
                        }

                    }
                }

                var6 = KQueuePort.this.threadExit(this, var3);
                if (var6 == 0 && KQueuePort.this.isShutdown()) {
                    KQueuePort.this.implClose();
                }

                return;
            }

            var6 = KQueuePort.this.threadExit(this, var3);
            if (var6 == 0 && KQueuePort.this.isShutdown()) {
                KQueuePort.this.implClose();
            }

        }
    }

   到这里,我们终于接近了 server端与client端只通信一次的真相:就是上面的run方法与poll方法。主要就是不停的从queue从获取端口各种的event,然后从通过poll方法生成各种event的task,然后上面的线程池里线程来处理各个task,而task的实际处理逻辑是先由操作系统和AIO底层完成一些准备工作,如收发包、事件分类(accept、write、read等),然后调用CompletionHandler中的completed与fail方法来处理。

  但是要注意的事,所有处理event的都是通过上面的队列queue来处理,所以,当client与server第一次通信时,queue中有我们自己定义的handler来处理task,但是每一次task处理完成之后,队列中的这个task就取出去了,下一次同样的事件触发时,是无法通过queue找到对应的handler来处理的。所以为了一直能与client通信,需要在read的handler处理完之后再一次进行read.

 // 处理完之后,要继续监听read,否则同一个socket只能通信一次,无法接收到之后通过socket发送的消息
        // -------------  重要 -------------------
        socketChannel.read(attachment,attachment,this);

   注意: 本地测试的时候用aio写的client,如果开启太多线程模拟client与server通信。所有client的线程都会阻塞,具体是什么原因还确定。

  

原文地址:https://www.cnblogs.com/zhaohuaxishi/p/12169992.html