华中师范大学2007年数学分析考研试题参考解答

来源  [尊重原有作者劳动成果]

一、 计算题

1:解:由于

$underset{x o {{0}^{+}}}{mathop{lim }}\,frac{ln (1-x)}{-x}=underset{x o {{0}^{+}}}{mathop{lim }}\,frac{1}{1-x}=1,underset{x o {{0}^{+}}}{mathop{lim }}\,frac{{{e}^{{{x}^{2}}}}-1}{{{x}^{2}}}=underset{x o {{0}^{+}}}{mathop{lim }}\,frac{2x{{e}^{{{x}^{2}}}}}{2x}=1$

于是

$underset{x o {{0}^{+}}}{mathop{lim }}\,frac{{{ln }^{3}}(1-x)sin [sin (ln frac{1}{x})]}{{{e}^{{{x}^{2}}}}-1}=underset{x o {{0}^{+}}}{mathop{lim }}\,frac{{{(-x)}^{3}}}{{{x}^{2}}}sin [sin (ln frac{1}{x})]=0$

2:不妨设${{t}_{1}}={{x}^{x}},{{t}_{2}}={{x}^{ln x}}$,于是

$ln {{t}_{1}}=xln x,ln {{t}_{2}}={{(ln x)}^{2}}$

则$frac{t_{1}^{}}{{{t}_{1}}}=ln x+1,frac{t_{2}^{}}{{{t}_{2}}}=frac{2ln x}{x}$

即$t_{1}^{}=(ln x+1){{x}^{x}},t_{2}^{}=frac{2ln x}{2}{{x}^{ln x}}$

于是$y=frac{2ln x}{x}{{x}^{ln x}}+(ln x+1){{x}^{x}}$

3:解:令$t={{x}^{4}}$,于是

$int_{0}^{+infty }{{{e}^{-{{x}^{4}}}}}dxcdot int_{0}^{+infty }{{{x}^{2}}{{e}^{-{{x}^{4}}}}dx=frac{1}{16}}int_{0}^{+infty }{{{t}^{-frac{3}{4}}}}{{e}^{-t}}cdot int_{0}^{+infty }{{{t}^{-frac{1}{4}}}}{{e}^{-t}}dt$

$=frac{1}{16}Gamma (frac{1}{4})Gamma (frac{3}{4})overset{}{mathop{=}}\,frac{1}{16}cdot frac{pi }{sin frac{pi }{4}}=frac{pi }{8sqrt{2}}$

此处介绍余元公式:

$forall pin (0,1)$,有$Gamma (p)Gamma (1-p)=frac{pi }{sin ppi }$

4:解:

$F(x)={{f}_{x}}[f(x,x),f(x,x)]cdot [{{f}_{x}}(x,x)+{{f}_{y}}(x,x)]+{{f}_{y}}[f(x,x),f(x,x)]cdot [{{f}_{x}}(x,x)+{{f}_{y}}(x,x)]$

于是$F(1)={{(a+b)}^{2}}$

5:解:不妨设$x=rcos heta ,y=rsin heta ,0le rle 1,0le heta le 2pi $

于是

$iint_{D}{({{x}^{3}}+{{y}^{3}}){{e}^{{{x}^{2}}+{{y}^{2}}}}}dxdy=int_{0}^{2pi }{d heta int_{0}^{1}{{{r}^{4}}}({{sin }^{3}} heta +{{cos }^{3}} heta ){{e}^{{{r}^{2}}}}dr=}int_{0}^{2pi }{({{sin }^{3}} heta +{{cos }^{3}} heta )}d heta cdot int_{0}^{1}{{{r}^{4}}{{e}^{r}}dr}$

$int_{0}^{2pi }{({{sin }^{3}} heta +{{cos }^{3}} heta )}d heta =int_{0}^{2pi }{(sin heta +cos heta )(1+sin heta cos heta )d heta }$

$=int_{0}^{2pi }{(sin heta +cos heta )d heta +int_{0}^{2pi }{{{sin }^{2}}}} heta cos heta d heta +int_{0}^{2pi }{sin heta {{cos }^{2}}} heta d heta $

$=int_{0}^{2pi }{{{sin }^{2}}} heta d(sin heta )-int_{0}^{2pi }{{{cos }^{2}}} heta d(cos heta )$

$=frac{1}{3}{{sin }^{3}} heta |_{0}^{2pi }-frac{1}{3}{{cos }^{3}} heta |_{0}^{2pi }$

$=0$

则$iint_{D}{({{x}^{3}}+{{y}^{3}}){{e}^{{{x}^{2}}+{{y}^{2}}}}}dxdy=0$

6:解:记${{L}_{1}}:0le xle 2,y=0$,$D$是由$L$和${{L}_{1}}$所围成的封闭曲线

$int_{{{L}_{1}}}{{{e}^{x}}sin ydy-{{e}^{x}}cos ydx=int_{0}^{2}{{{e}^{x}}}}dx={{e}^{x}}|_{0}^{2}={{e}^{2}}-1$

另一方面,由格林公式可知:

$int_{L+{{L}_{1}}}{{{e}^{x}}sin ydy-{{e}^{x}}cos ydx=iint_{D}{({{e}^{x}}sin y-{{e}^{x}}sin y)dxdy=0}}$

于是

$int_{L}{{{e}^{x}}sin ydy-{{e}^{x}}cos ydx=-}int_{{{L}_{1}}}{{{e}^{x}}sin ydy-{{e}^{x}}cos ydx=}1-{{e}^{2}}$

二、

(1)证明:由于$sqrt{x}f(x)$在$(0,+infty )$上有界,则存在$M0$,使得

$left| sqrt{x}f(x) ight|le M$

对任意的$varepsilon 0$,对任意的${{x}_{1}},{{x}_{2}}in (0,+infty )$,不妨设${{x}_{1}}{{x}_{2}}$

于是

$left| f({{x}_{1}})-f({{x}_{2}}) ight|=left| int_{{{x}_{1}}}^{{{x}_{2}}}{f(t)dt} ight|le int_{{{x}_{1}}}^{{{x}_{2}}}{left| f(t) ight|}dt=int_{{{x}_{1}}}^{{{x}_{2}}}{left| sqrt{t}f(t) ight|}cdot frac{1}{sqrt{t}}dt$

$le 2Mint_{{{x}_{1}}}^{{{x}_{2}}}{frac{1}{sqrt{t}}}dt=2M(sqrt{{{x}_{2}}}-sqrt{{{x}_{1}}}le 2Msqrt{{{x}_{2}}-{{x}_{1}}}$

令$delta =frac{{{varepsilon }^{2}}}{4{{M}^{2}}}$,当$left| {{x}_{1}}-{{x}_{2}} ight|delta $时,$left| f({{x}_{1}})-f({{x}_{2}}) ight|varepsilon $

即$f(x)$在$(0,+infty )$上一致收敛

(或利用柯西中值定理,令$g(x)=sqrt{x}$)

(2)由(1)可知,对任意的$varepsilon 0$,令${{x}_{1}} o {{0}^{+}}$,当$0xdelta $时,有

$left| f(x)-f(0) ight|varepsilon $

由极限定义可知:

$underset{x o {{0}^{+}}}{mathop{lim }}\,f(x)=f({{0}^{+}})$存在

(3)能,理由如下:

证明:由于$underset{x o {{0}^{+}}}{mathop{lim }}\,sqrt{x}f(x)$存在,则存在$M0$,存在${{X}_{1}}0$,当$x{{X}_{1}}$时,$left| sqrt{x}f(x) ight|le M$

由(1)可知:$f(x)$在$(0,{{X}_{1}})$上一致收敛

而$underset{x o +infty }{mathop{lim }}\,sqrt{x}f(x)$存在,同理可证$f(x)$在$({{X}_{2}},+infty )$上一致收敛

而$f(x)$在$[{{X}_{1}},{{X}_{2}}]$上连续,则$f(x)$在$[{{X}_{1}},{{X}_{2}}]$上一致连续

于是$f(x)$在$(0,+infty )$上一致连续

三、

(1)证明:对任意的$xin (a,+infty )$,则$f(x)$在$[x,x+1]$上可导

记$underset{x o +infty }{mathop{lim }}\,f(x)=A$

$underset{x o +infty }{mathop{lim }}\,f(x+1)=A$,则

$underset{x o +infty }{mathop{lim }}\,[f(x+1)-f(x)]=0$

由拉格朗日中值定理可知:存在$xxi x+1$,使得

$f(x+1)-f(x)=f(xi )[(x+1)-x]=f(xi )$

且当$x o +infty $时,$xi o +infty $,于是

$underset{x o +infty }{mathop{lim }}\,f(xi )=underset{x o +infty }{mathop{lim }}\,[f(x+1)-f(x)]=1$

由归结原则可知:

$underset{x o +infty }{mathop{lim }}\,f(xi )=underset{x o +infty }{mathop{lim }}\,f(x)=0$

(2)可以推出,理由如下:

证明:应用$Taylor$公式可知:对任意的$m=1,2,3,4$

$f(x+m)=f(x)+mf(x)+frac{{{m}^{2}}}{2!}f(x)+frac{{{m}^{3}}}{3!}f(x)+frac{{{m}^{4}}}{4!}f({{xi }_{m}}(x)),x{{xi }_{m}}(x)x+m$

由于$f(x),f(x),f(x)$均可用$f(x+m)-f(x)$及$f({{xi }_{m}}(x))$表达

而$underset{x o +infty }{mathop{lim }}\,[f(x+m)-f(x)]$与$underset{x o +infty }{mathop{lim }}\,f({{xi }_{m}}(x))=underset{x o +infty }{mathop{lim }}\,f(x)$均存在有限

故$underset{x o +infty }{mathop{lim }}\,{{f}^{(k)}}(x)$均存在有限,不妨记

$underset{x o +infty }{mathop{lim }}\,{{f}^{(k)}}(x)={{A}_{k}},k=0,1,2,3,4$

在上面的$Taylor$公式中,令$x o +infty $,则${{xi }_{m}}(x) o +infty $,于是有

$0=underset{x o +infty }{mathop{lim }}\,[f(x+m)-f(x)]=munderset{x o +infty }{mathop{lim }}\,f(x)+frac{{{m}^{2}}}{2!}underset{x o +infty }{mathop{lim }}\,f(x)+frac{{{m}^{3}}}{3!}underset{x o +infty }{mathop{lim }}\,f(x)+frac{{{m}^{4}}}{4!}underset{x o +infty }{mathop{lim }}\,f({{xi }_{m}}(x))$

即$0={{A}_{0}}-{{A}_{0}}=m{{A}_{1}}+frac{{{m}^{2}}}{2!}{{A}_{2}}+frac{{{m}^{3}}}{3!}{{A}_{3}}+frac{{{m}^{4}}}{4!}{{A}^{4}},m=1,2,3,4$

列举出来为

$left{egin{array}{ll} {A_1} + frac{1}{{2!}}{A_2} + frac{1}{{3!}}{A_3} + frac{1}{{4!}}{A_4} = 0, \ 2{A_1} + frac{{{2^2}}}{{2!}}{A_2} + frac{{{2^3}}}{{3!}}{A_3} + frac{{{2^4}}}{{4!}}{A_4} = 0, \ 3{A_1} + frac{{{3^2}}}{{2!}}{A_2} + frac{{{3^3}}}{{3!}}{A_3} + frac{{{3^4}}}{{4!}}{A_4} = 0, \ 4{A_1} + frac{{{4^2}}}{{2!}}{A_2} + frac{{{4^3}}}{{3!}}{A_3} + frac{{{4^4}}}{{4!}}{A_4} = 0, end{array} ight.$ $Rightarrowleft{egin{array}{ll} {A_1} + frac{1}{{2!}}{A_2} + frac{1}{{3!}}{A_3} + frac{1}{{4!}}{A_4} = 0, \ {A_1} + frac{2}{{2!}}{A_2} + frac{{{2^2}}}{{3!}}{A_3} + frac{{{2^3}}}{{4!}}{A_4} = 0, \ {A_1} + frac{3}{{2!}}{A_2} + frac{{{3^2}}}{{3!}}{A_3} + frac{{{3^3}}}{{4!}}{A_4} = 0, \ {A_1} + frac{4}{{2!}}{A_2} + frac{{{4^2}}}{{3!}}{A_3} + frac{{{4^3}}}{{4!}}{A_4} = 0, end{array} ight.$

方程组的系数行列式为

$ left|egin{array}{cccc} 1 {frac{1}{{2!}}} {frac{1}{{3!}}} {frac{1}{{4!}}} \ 1 {frac{2}{{2!}}} {frac{{{2^2}}}{{3!}}} {frac{{{2^3}}}{{4!}}} \ 1 {frac{3}{{2!}}} {frac{{{3^2}}}{{3!}}} {frac{{{3^3}}}{{4!}}} \ 1 {frac{4}{{2!}}} {frac{{{4^2}}}{{3!}}} {frac{{{4^3}}}{{4!}}}  end{array} ight| $$ =frac{1}{{1!2!3!4!}}left|egin{array}{cccc} 1 1 1 1 \ 1 2 {{2^2}} {{2^3}} \ 1 3 {{3^2}} {{3^3}} \ 1 4 {{4^2}} {{4^3}}  end{array} ight| $

 =$frac{1}{{1!2!3!4!}}(2 - 1)(3 - 1)(3 - 2)(4 - 1)(4 - 2)(4 - 3) = frac{1}{{4!}} e 0$

即$underset{x o +infty }{mathop{lim }}\,{{f}^{(k)}}(x)=0,k=1,2,3,4$

(或利用第二数学归纳法证明)

 

四、证明:证明:由题设知$f(x)$在$ [0,+infty ) $上必有界,设$left| f(x) ight|le M$

对$forall varepsilon 0$,有

$left| frac{1}{x}int_{0}^{x}{f(t)dt}-A ight|$

$=left| int_{0}^{1}{(f(yx)-A)dy} ight|$

$le int_{0}^{frac{varepsilon }{2(M+A)}}{left| f(yx)-A ight|}dy+int_{frac{varepsilon }{2(M+A)}}^{1}{left| f(yx)-A ight|}dy$

由$underset{x o +infty }{mathop{lim }}\,f(x)=A$知

对上述$varepsilon 0,exists {{X}_{1}}0, $使得当$x{{X}_{1}}$时有$left| f(x)-A ight|frac{varepsilon }{2}$

令$ ext{X}=frac{2(M+A)}{varepsilon }{{X}_{1}}$,则当$xX$时,有$int_{frac{varepsilon }{2(M+A)}}^{1}{left| f(yx)-A ight|}dyfrac{varepsilon }{2}$

于是

$left| frac{1}{x}int_{0}^{x}{f(t)dt}-A ight|frac{varepsilon }{2}+frac{varepsilon }{2}=varepsilon $

因此

$underset{x o +infty }{mathop{lim }}\,frac{1}{x}int_{0}^{x}{f(t)dt}=A$.

(或直接利用定义)

五、证明:

充分性:若$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$收敛,令$0S=underset{n o +infty }{mathop{lim }}\,{{S}_{n}}=sumlimits_{n=1}^{+infty }{{{a}_{n}}}+infty $

由于

$underset{n o +infty }{mathop{lim }}\,frac{frac{{{a}_{n}}}{{{S}_{n}}}}{{{a}_{n}}}=underset{n o +infty }{mathop{lim }}\,frac{1}{{{S}_{n}}}=frac{1}{S}+infty $

由比较判别法可知:$sumlimits_{n=1}^{+infty }{frac{{{a}_{n}}}{{{S}_{n}}}}$收敛

必要性:反证法:若$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$发散

考虑

$sumlimits_{k=n+1}^{n+p}{frac{{{a}_{k}}}{{{S}_{k}}}}=frac{{{a}_{n+1}}}{{{S}_{n+1}}}+frac{{{a}_{n+2}}}{{{S}_{n+2}}}+cdots +frac{{{a}_{n+p}}}{{{S}_{n+p}}}frac{sumlimits_{k=n+1}^{n+p}{{{a}_{k}}}}{{{S}_{n+p}}}=frac{{{S}_{n+p}}-{{S}_{n}}}{{{S}_{n+p}}}=1-frac{{{S}_{n}}}{{{S}_{n+p}}}$

由于$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$发散,则对任意的$nin {{N}^{*}}$,存在$pin {{N}^{*}}$,使得

$frac{{{S}_{n}}}{{{S}_{n+p}}}frac{1}{2}$

从而$sumlimits_{k=n+1}^{n+p}{frac{{{a}_{k}}}{{{S}_{k}}}}frac{1}{2}$

由柯西收敛准则知:$sumlimits_{n=1}^{+infty }{frac{{{a}_{n}}}{{{S}_{n}}}}$发散,矛盾

从而$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$收敛

六、

(1)证明:由于

$2sin frac{x}{2}(frac{1}{2}+sumlimits_{k=1}^{n}{cos kx)=sin }frac{x}{2}+(sin frac{3x}{2}-sin frac{x}{2})+cdots +[sin (n+frac{1}{2})x-sin (n-frac{1}{2})x]=sin (n+frac{1}{2})x$

当$xin [alpha ,2pi -alpha ]$时,$sin frac{x}{2} e 0$

于是

$frac{1}{2}+sumlimits_{k=1}^{n}{cos kx}=frac{sin (n+frac{1}{2})x}{2sin frac{x}{2}}$

于是$sumlimits_{n=1}^{+infty }{cos nx}$部分和在$xin [alpha ,2pi -alpha ]$上一致有界

令${{u}_{n}}(x)=cos nx,{{v}_{n}}(x)={{a}_{n}}$

由狄利克雷判别法知:$sumlimits_{n=1}^{+infty }{{{a}_{n}}}cos nx$在$xin [alpha ,2pi -alpha ]$上一致收敛

(2)证明:

充分性:若$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$收敛,由于$left| {{a}_{n}}cos nx ight|le left| {{a}_{n}} ight|={{a}_{n}}$

由$M$判别法可知:$sumlimits_{n=1}^{+infty }{{{a}_{n}}}cos nx$在$[0,2pi ]$上一致收敛

必要性:若$sumlimits_{n=1}^{+infty }{{{a}_{n}}}cos nx$在$[0,2pi ]$上一致收敛,令$x=0$

即$sumlimits_{n=1}^{+infty }{{{a}_{n}}}$收敛收敛

七、证明:由于

${{u}_{x}}=z+x{{z}_{x}}+yf(z){{z}_{x}}+g(z){{z}_{x}}=z$

${{u}_{xx}}={{z}_{x}}$

${{u}_{xy}}={{z}_{y}}$

${{u}_{y}}=x{{z}_{y}}+f(z)+yf(z){{z}_{y}}+g(z){{z}_{y}}=f(z)$

${{u}_{yy}}=f(z){{z}_{y}}$

${{u}_{yx}}=f(z){{z}_{x}}$

于是

$frac{{{partial }^{2}}u}{partial {{x}^{2}}}cdot frac{{{partial }^{2}}u}{partial {{y}^{2}}}-{{left( frac{{{partial }^{2}}u}{partial xpartial y} ight)}^{2}}=0$

八、证明:

(1)由于$frac{partial f}{partial n}=frac{partial f}{partial x}cos (n,x)+frac{partial f}{partial y}cos (n,y)+frac{partial f}{partial z}cos (n,z)$

由第一型和第二型曲面积分的关系和$Guass$公式可知:

$iintlimits_{S}{frac{partial f}{partial n}}dS=iintlimits_{S}{frac{partial f}{partial x}cos (n,x)+frac{partial f}{partial y}cos (n,y)+frac{partial f}{partial z}cos (n,z)}dS$

$=iintlimits_{S}{frac{partial f}{partial x}dydz+frac{partial f}{partial y}dzdx+frac{partial f}{partial z}dxdy}$

$=iiint_{V}{(frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}})dxdydz}$

即$iintlimits_{S}{frac{partial f}{partial n}}dS=iiint_{V}{(frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}})dxdydz}$

(2)充分性:若对任意的$S$,$iintlimits_{S}{frac{partial f}{partial n}}dS$,总有$iiint_{V}{(frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}})dxdydz}=0$

不妨设$g(x,y,z)=frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}}$,由积分中值定理可知:存在$(xi ,eta ,zeta )in V$

[iiint_{V}{(frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}}})dxdydz=g(xi ,eta ,zeta )V=0]

于是由$V$的任意性可知:$g(xi ,eta ,zeta )=0$,再由$(xi ,eta ,zeta )$的任意性知:

$frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}}=0$

必要性:若$frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}}=0$,则$iintlimits_{S}{frac{partial f}{partial n}}dS=iiint_{V}{(frac{{{partial }^{2}}f}{partial {{x}^{2}}}+frac{{{partial }^{2}}f}{partial {{y}^{2}}}+frac{{{partial }^{2}}f}{partial {{z}^{2}}})dxdydz}=0$

 

原文地址:https://www.cnblogs.com/zhangzujin/p/4054224.html