(三)分数阶微积分

 一些基本函数的R-L分数阶导数:
c. 幂函数 $t^{mu}$
$$_{0}^{RL}D_{t}^{ u}t^{mu}=frac{Gamma(1+mu)}{1+mu- u}t^{mu- u}$$
首先我们来计算 $t^{mu}$的$alpha$分数阶积分
egin{eqnarray*}
{}_{0}^{RL}D_{t}^{-alpha}t^{mu}&=&frac{1}{Gamma(alpha)}int_{0}^{t}(t- au)^{alpha-1}t^{mu}\
&=&frac{t^{alpha+mu}}{Gamma(alpha)}int_{0}^{1}(1-x)^{alpha-1}x^{mu}dx\
&=&frac{t^{alpha+mu}}{Gamma(alpha)}B(alpha,mu+1)\
&=&frac{Gamma(1+mu)}{Gamma(1+mu+alpha)}t^{alpha+mu}
end{eqnarray*}
从而
egin{eqnarray*}
{}_{0}^{RL}D_{t}^{ u}t^{mu}&=&frac{d}{d au}{}_{0}^{RL}D_{t}^{-(1- u)}t^{mu}\
&=&frac{d}{d au}frac{Gamma(1+mu)}{Gamma(2+mu- u)}t^{1+mu- u}\
&=&frac{Gamma(1+mu)}{Gamma(1+mu- u)}t^{1+mu- u}\
end{eqnarray*}
从上面可以看到,分数阶算子将微分和积分在形式上进行了统一,这是经典的微积分所不具备的。当$ u$和$mu$都为正整数时,与经典的整数阶微积分结果相同。一个有意思的结果是令$mu=0$
$$_{0}^{RL}D_{t}^{ u}1=frac{1}{Gamma(1- u)}t^{- u}$$
这与经典的整数阶微积分认为常函数的导数为$0$是不同的。
c. 指数函数 $e^{t}$
$${}_{0}^{RL}D_{t}^{ u}e^{t}=sum_{n=0}^{infty}frac{1}{n!}{}_{0}^{RL}D_{t}^{ u}t^{n}=sum_{n=0}^{infty}frac{t^{n- u}}{Gamma(1+n- u)}$$
当积分下限为$-infty$时
$${}_{-infty}^{RL}D_{t}^{ u}e^{t}=e^{t}$$
d. 三角函数$sin t,cos t$
$${}_{-infty}^{RL}D_{t}^{ u}sin x=sin(t+frac{pi}{2} u)$$
$${}_{-infty}^{RL}D_{t}^{ u}cos x=cos(t+frac{pi}{2} u)$$


Remark:一般分数阶导数的计算很复杂,我们当然希望能建立类似于整数阶导数的分数阶导数的四则运算公式以及复合函数的链式法则,对于加减数乘我们都能轻易得到结论,然而对乘积,商,复合函数没有简单的求和公式,计算的复杂性大大增加。好在很多函数可以展成三角级数或者幂级数形式。在数学分析和实分析中满足一定条件我们可以逐项求导,并判断求导之后的级数的敛散性问题。分数阶微积分并不是“新”的知识,仍未跳出经典分析的范畴,但积分和导数从整数阶推广到分数阶必将进一步拓展导数的应用范围也将使我们对自然界的很多复杂现象的认识和理解更进一层,积分和导数从整数阶到分数阶在理论上也极具意义。笔者曾在若干年前听马知恩教授的讲座,马知恩认为现代数学的发展趋势是从有限到无限、从定常到时变、从局部到整体、从确定到随机、从线性到非线性、从正规到奇异、从稳定到分支混沌、从低维到高维、从分科到综合。而分数阶微积分正体现了“从局部(正整数)到整体(任意实数并由此可定义任意复数阶导数)”的特征,这也是和数的推广史是相符的。

原文地址:https://www.cnblogs.com/zhangwenbiao/p/3705484.html