1365 Fib(N) mod Fib(K) [斐波那契相关]

Fib(N) mod Fib(K)Fib(N) mod Fib(K)

Fib(N)表示斐波那契数列的第N项(F(0)=0,F(1)=1F(0) = 0, F(1) = 1),给出N和K,求 Fib(N)modFib(K)Fib(N) mod Fib(K)。由于结果太大,输出 Mod 1000000007Mod 1000000007 的结果。


color{red}{正解部分}

首先要知道

Fi=FkFik+1+Fk1FikF_i = F_kF_{i-k+1}+F_{k-1}F_{i-k},

mod Fkmod F_k 意义下继续化简 downarrow

Fi=Fk1Fik=Fk1(FkFi2k+1+Fk1Fikk)=Fk12Fi2k ​=Fk1ikFi%kF_i\ = F_{k-1}F_{i-k}\ = F_{k-1}(F_kF_{i-2k+1}+F_{k-1}F_{i-k-k})\ = F_{k-1}^2F_{i-2k}\ dotsi \ = F_{k-1}^{lfloor frac{i}{k} floor}F_{i\%k}


再要知道

Fk12+Fk1FkFk2=(1)kF_{k-1}^2+F_{k-1}F_{k}-F_k^2 = (-1)^k

:证明:

首先要知道 二阶行列式 的相关内容如下.

二阶行列式: det(a bc d)=adbcdet egin{pmatrix} a b \ c d end{pmatrix} =ad-bc

再看斐波那契数列的转移矩阵如下,

[1 11 0]k=[Fk+1    FkFk     Fk1]egin{bmatrix} 1 1 \ 1 0 end{bmatrix}^k = egin{bmatrix} F_{k+1} F_k \ F_k F_{k-1} end{bmatrix}

矩阵相等, 行列式也相等,

(1)k=Fk+1Fk1Fk2=Fk12+Fk1FkFk2 herefore (-1)^k \ = F_{k+1}F_{k-1} - F_k^2\ = F_{k-1}^2+F_{k-1}F_k-F_k^2

得证 .

所以在 mod  Fkmod F_k 意义下, (1)k=Fk12(-1)^k=F_{k-1}^2 .


再看原式: Fi=Fk1ikFi%kF_i = F_{k-1}^{lfloor frac{i}{k} floor}F_{i\%k}

x=ikx= lfloor frac{i}{k} floor, y=i%ky=i\%k,

Fi=Fk1xFy={x&1==0,   (1)x2kFyx&1==1,   (1)(x2+1)kFyk=(1)(x2+1)k+ky1FkyF_i = F_{k-1}^xF_{y}=egin{cases} x&1 == 0, (-1)^{frac{x}{2}k} F_y\ x&1 == 1, (-1)^{(frac{x}{2}+1)k} F_{y-k} = (-1)^{(frac{x}{2}+1)k+k-y-1} F_{k-y} end{cases}


其中 FykF_{y-k} 可能为负数, 这里又要引入

:Fi=(1)i1Fi斐波那契的负系数项:F_{-i} = (-1)^{i-1}F_i .

然后就可以 ACAC!!

总结一下, 该题涉及的知识点有

  • Fi=FkFik+1+Fk1FikF_i = F_kF_{i-k+1}+F_{k-1}F_{i-k}
  • Fk12+Fk1FkFk2=(1)kF_{k-1}^2+F_{k-1}F_{k}-F_k^2 = (-1)^k
  • Fi=(1)i1FiF_{-i} = (-1)^{i-1}F_i

color{red}{实现部分}

#include<bits/stdc++.h>
#define reg register
typedef long long ll;

const int mod = 1e9 + 7;

ll N;
ll K;

struct Matrix{ int C[4][4]; Matrix(){ memset(C, 0, sizeof C); } };

Matrix modify(const Matrix &a, const Matrix &b){
        Matrix s;
        for(reg int i = 1; i <= 2; i ++)
                for(reg int j = 1; j <= 2; j ++)
                        for(reg int k = 1; k <= 2; k ++){
                                int &t = s.C[i][j];
                                t = (1ll*t + (1ll*a.C[i][k]*b.C[k][j]%mod)) % mod;
                        }
        return s;
}

Matrix ma_Ksm(Matrix a, ll b){
        Matrix s;
        for(reg int i = 1; i <= 2; i ++) s.C[i][i] = 1;
        while(b){
                if(b & 1) s = modify(s, a);
                a = modify(a, a); b >>= 1;
        }
        return s;
}

ll get(ll k){
        Matrix res, I;
        res.C[1][1] = 1;
        I.C[1][1] = I.C[1][2] = I.C[2][1] = 1;
        I = ma_Ksm(I, k);
        res = modify(res, I);
        return res.C[1][2];
}

void Work(){
        scanf("%lld%lld", &N, &K);
        ll x = N/K, y = N%K;
        if(x & 1){
                x = (x+1)/2, y = K-y-1;
                x = (K & 1) * x;
                ll Ans = ((x+y&1)?-1:1) * get(y + 1);
                if(Ans < 0) Ans = (Ans + get(K) + mod) % mod;
                printf("%lld
", Ans);
        }else{
                x >>= 1;
                if(!(K&1)) x = 0;
                ll Ans = ((x&1)?-1:1) * get(y);
                if(Ans < 0) Ans = (Ans + get(K) + mod) % mod;
                printf("%lld
", Ans);
        }
}

int main(){ 
        freopen("fib.in", "r", stdin);
        freopen("fib.out", "w", stdout);
        int T; scanf("%d", &T);
        while(T --) Work();
        return 0;
}
原文地址:https://www.cnblogs.com/zbr162/p/11822537.html