JDK8 HashMap源码分析

HashMap需要注意以下几方面

(1) HasMap底层是用Node数组table存储数据, 它是采用懒加载的方式初始化的, 初始长度16, 加载因为0.75, 每次扩容2倍, 在扩容时,移动节点都是采用尾插法. 而JDK8之前都是采用的头插法(这里有个典型的问题,多线程可能死循环).

(2) JDK8解决key的hash冲突采用的扰乱算法很简单,一次非一次位移,共两次.  而JDK8之前为解决这个问题共用了9次. 其原因是JDK8之前为了均推, JDK8无所谓了,反正底层是红黑树.

(3) 当hash冲链表个数达到8个时,链表会转成红黑树.  而当红黑树的节点小于等于6个时,又会由树转成链表. 

   为啥链表个数是8时,由链表转树呢?

      因为根据泊松分布概率算出来,hash冲突8个时的概率是千万分之六, 如果是9个,概念会更低,千万分之一都不到.

      为啥6个时, 又会由树转链表呢?

      这可能是出于两方面的原因吧,如果是7,put,remove时,会造成一会儿树转表,一会表转树,影响性能. 另一方面链表长底为6时,查询最快为1,最慢为6, 平均一下3.5, 树节点为6时,运气不好也会查3次,感觉差不了多少,更重的是,链表插入快,树不行.

(4)  树节点的顺序首先是通过hash值比较,记为dir, 如果dir <= 0 ,往左添加 ,否则往右添加.  如果通过hash比较不出key的大小来, 就会通过compareTo方法进行比较,得出dir值.

  

1. putVal方法

该方法主要做以下几件事:

(1)  首先判断HashMap底层的table是否初始化,如果没有,就调用resize()方法进行初始化table操作. 注意resize方法即可以初始化table操作,也可以对table进行扩容 

(2) 根据当前key的hash值和table的size值,计算key对应的valu值应该存储在table表中的下标值,记为i

(3) 如果table[i]为空,就创建一个Node节点(节点封装了key,value相关的数据)存放在table[i]上

(4) 如果table[i]已经有值了,我们将该值记为p,注意这个p肯定table表中的元素,同时也可能是链表中的头节点, 这又分成3种情况处理

  <1> 如果key与p节点的key完全相等,那就覆盖oldValue

  <2> 如果p是一颗树.....(跳过,没看懂)

  <3> 除去上面两种情况之外,P的屁股后面肯定挂着一个链表,  这就需要对链表中的每个元素进行遍历,判断当链表中的节点key与当前put的key是否相等,如果相等,也是将oldValue进行覆盖,否则就是new一个新的Node节点,然后挂在链表的屁股后面. 同时也会对这个链表的节点长度进行判断,如果超过8,则会调用treeifyBin方法,进行链表转树的操作

(5) 源码

/**
*    Map put方法的实现
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    
    // 如果table是null,就是还没有初始化(jdk8中, table是在第一次使用的时候初始化的)
    if ((tab = table) == null || (n = tab.length) == 0)
        // resize()方法对table进行初始化或者2倍扩容
        n = (tab = resize()).length;
        
    // table的length减1与当前key的hash值的与运算,即是这个key在table中存储下标
    // & 运行, 二进制位数都是1结果才是1,否则是0
    // table中是否存储着当前key对应的value值
    if ((p = tab[i = (n - 1) & hash]) == null)  // 不存在这个key,如果存在,就挂链表
        // 创建一个新的Node,存储到table表中下标为i的slot位置
        tab[i] = newNode(hash, key, value, null);
   
   else {// 挂链表
        
        Node<K,V> e; K k;
        
        // 1. 对table中的数据进行覆盖判断,因为p是链表的头节点,是存放在table中的
        if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;  // 将覆盖前的p赋值给e, 注意:这儿并没有进行覆盖
            
        // 2. 处理树的情况(先跳过)
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        
        // 3. 链表的情况,有hash冲突的数据,直接挂在原节点的next上
        else {
            for (int binCount = 0; ; ++binCount) {
            
                if ((e = p.next) == null) { 
                    // 将key,value封装成一个Node节点,然后挂在p的next上
                    p.next = newNode(hash, key, value, null);
                    
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        // 链表转树结构
                        treeifyBin(tab, hash);
                    break;
                }
            
                // 对链表节点中数据进行覆盖判断,注意前面有段相同的代码,那是对table中的数据(链表头节点)进行覆盖操作
                if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) 
                    break;//  如果key相同,break跳出for循环,执行后面的逻辑
                p = e;
            }
        }
        // 存在映射关系的key
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;  // 用新的value值去覆盖老的value值
            afterNodeAccess(e);
            return oldValue;  // 返回覆盖前的value值
        }
    }
    // 记录HashMap修改的次数
    ++modCount;
    // 记录key-value映射的次数,相当于HashMap的size
    if (++size > threshold)  // 如果size大于threshold,就需要进行扩容
        resize();
    // 移除更老的数据, 这里暂时不看
    afterNodeInsertion(evict);
    return null; // 返回null
}

2. resize方法

  该方法有两个作用,一是对table进行初始化操作,一是对table进行扩容操作. 原则上每次扩容2倍.  这个方法的重点是看它如何将oldTab中的元素转移到newTab中去的.

  源码使用了for循环,遍历出oldTab中的每一个元素,我们记为e, 然后再对e的相关属性进行判断, 同样分为3种情况

(1) 如果e.next==null, 表明e节点屁股后面即没跟树,也没跟链表,即是e.key无hash冲突的情况. 这样情况最简单, 通过计算e.hash值然后& 扩容后的table长度,即为e在newTab中的存放位置

(2) e节点就是一颗树的情况, 跳过

(3) e屁股后面挂着链表的情况,也没看太懂

  源码显示,通过 e.hash & oldCap 将e屁股后面挂的链表拆分成了两个链表, 然后将这两个新的链表分析挂在newTab的两个槽位上. 这儿比较神奇,原本处于同一个链表结构的数据(oldTab),有hash冲突, 现在通过扩容,挂在了newTab的两个槽位上,表明这两个槽位的中key不存在hash冲突了, 这是不是从侧面说明了,扩容减少了hash冲突的机率.

源码

// 对HashMap底层table进行初始化或者扩容
final Node<K,V>[] resize() {
    // 1. 将原先的table赋值给变量oldTab
    Node<K,V>[] oldTab = table;
    // oldTab的容量值,即原table中有多少个元素
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //  原先扩容的阈值
    int oldThr = threshold;
    // 定义了两个变量,新的table的容量和阈值
    int newCap, newThr = 0;
    if (oldCap > 0) { // 表示原table中有元素
        if (oldCap >= MAXIMUM_CAPACITY) {  // 如果原来table(扩容前)的元素个数大于等于 1073741824
            threshold = Integer.MAX_VALUE;  // 直接将阈值设置为Integer的Max_VALUE值
            return oldTab;
        }
        // newCap在 oldCap的基础扩容1倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    
    
    // 这儿就是第一次使用时,对table进行初始化
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab; // 将初始化的这个newTab赋值到table
    
    
    
    // 下面应该是重点: 扩容(将扩容前table中的元素移动到扩容后的table中去).   如果是初始化, 不会进入if条件里面去
    if (oldTab != null) {
        // 通过for循环遍历取出扩容前table中的每个元素
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
             // 只对非空元素进行处理
            if ((e = oldTab[j]) != null) {   // 将oldTab中的j号位置的元素取出来赋值给e这个变量
                oldTab[j] = null;    // 将oldTab中j号位置置空
                
                // 下面这段逻辑就是将扩容前table中的元素移动到扩容后table, 具体分为3种情况
                //1 . 第一种情况,也是最简单的, 无hash冲突,也就是说无链表
                if (e.next == null) 
                    newTab[e.hash & (newCap - 1)] = e;  // 将e这个元素放到newTab(扩容后的table)的  e.hash & (newCap - 1) 这个位置
                
                // 有hash冲突,并且后面的链表已经转成了红黑树
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                
                // 有hash冲突,但后边还是链表
                else { 
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    
                    // 这个do...while循环将oldTab[j]元素后面链表中的节点分别挂在两个链表上,一个是lo...., 一个是hi...., 
                    // 然后将lo,hi两个拆分出来的链表挂在扩容后的newTab的不同位置上
                    // <1> 原index   <2> 原index+oldTab的length
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) { // lo.. 链表
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        
                        }else {   // hi..链表
                            
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    
                    
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;  // 将lo链表挂到newTab[j]位置上
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;  // 将hi链表挂到newTab[j + oldCap]位置上
                    }
                }
            }
        }
    }
    return newTab;
}

左旋分析

 // 左旋
        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
            // 忧伤, 读代码 r 节点是左旋的支撑点,
            TreeNode<K, V> r, pp, rl;
            if (p != null && (r = p.right) != null) {// 这一步,p的右节点是r, 这个r不就是前面的x吗


                // 支撑节点的左子变成原父节点的右子树.
                // 因为下面两行的功能对于下面的if...else if...else都适用,所以提到前面来了
                if ((rl = p.right = r.left) != null)  // 如果等于,就说明当前添加节点无左子树
                    rl.parent = p;


                // 下面三个条件一起看
                if ((pp = r.parent = p.parent) == null) { // if情况,p是根节点(这种情况最简单)
                    (root = r).red = false;  // r成了根节点  ------------第一种情况
                } else if (pp.left == p) {
                    pp.left = r;   // ------------第二种情况
                } else {  // 这种情况应该是: p是pp的右子树
                    pp.right = r;  // ------------第三种情况
                }

                // 下面两句代码的意思就是: p成了r左子树
                r.left = p;
                p.parent = r;
            }
            return root;
        }

 

 

右旋分析

 /**
         * 右旋 ,其实跟左旋是一样一样的道理,只是旋转的中心节点不同而已
         * @param root  根节点
         * @param p   其[实是当前节点的爷节点
         * @param <K>
         * @param <V>
         * @return
         */
        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                // 将l的右子树移动到p的左子树位置 (右旋就是干这事嘛,)
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;


                if ((pp = l.parent = p.parent) == null)  // p就是根节点
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

balanceInsertion方法代码分析示意图

 /**
         * 这个方法主要是在干变色的事, 并判断何时该旋转,
         * 而具体的旋转逻辑由 rotateLeft 和 rotateRight 两个方法完成
         *
         * @param root
         * @param x  刚添加到树上的节点
         * @param <K>
         * @param <V>
         * @return
         */
        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
            // 根据红黑树的性质,新添加的元素节点一定是红色
            x.red = true;
            /**
             * xp : x节点的父节点
             * xpp : x节点的父父节点,爷节点
             * xppl : x爷节点左子节点
             * xppr : x爷节点的右子节点
             */
            // 又是一个无限循环
            for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                // 如果x节点的父节点是null,
                if ((xp = x.parent) == null) {
                    // 那么x节点就会成为root节点,变黑色
                    x.red = false;
                    return x;
                } else if (!xp.red || (xpp = xp.parent) == null)  // 如果x的父节点是黑色或者 x的爷爷节点是null
                    /*
                       如何理解?
                       !xp.red代码分析: x是新增量节点,肯定是红色,xp父节点不是红色, 所以肯定不需要变色,也不需要旋转, 红黑树是平衡的,直接返回root节点即可
                       (xpp = xp.parent) == null 分析: 爷节点是空,说明红黑树的深度为2. 所以无论x是添加到left ,还是right, 都是平衡的,直接返回root节点即可

                     */
                    return root;

                /*
                 *如果代码执行到这儿,那么x一定有父节点和爷节点,且爷节点是黑,那么父节点就是红;
                 */
                if (xp == (xppl = xpp.left)) { // xp在爷节点的左子树上
                    /*
                     *if的变色逻辑就是:
                     *  叔,父都是红色(由它可以推出爷是黑), 这时需要变色
                     *  叔,父由红变黑,爷由黑变红
                     *  只需变色即可重新自平衡
                     */
                    if ((xppr = xpp.right) != null && xppr.red) { // x的右叔是红
                        xppr.red = false;  //右叔变黑
                        xp.red = false; // 父变黑
                        xpp.red = true; // 爷由黑变红
                        x = xpp;  // 当前节点就变成爷节点了.
                    } else {
                        /**
                         * 进入这个else的条件有:
                         * 1. 右叔为空,无节点(这种情况如果存在,是单左旋)
                         * 2. 右叔存在,但是为黑色
                         */
                        if (x == xp.right) {// x在xp的右子树上
                            // 左旋(以父节点作为支点左旋,所以将xp赋值给x)
                            // 即然这儿发生左旋, 那么xp一定是红,右叔一定是黑...
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;  // 这句代码的作用呢????????????
                        }

                        if (xp != null) {
                            // 这个判断是什么意思 ??????????
                            // 为什么再一次判断xp不为空???????
                            // 经历过rotateLeft之后的xp与未rotateLeft之前xp是同一个节点吗?????  答案肯定是!
                            xp.red = false;// 父黑
                            if (xpp != null) {
                                xpp.red = true;  // 爷红
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

补充HashMap类源码

/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

package qinfeng.redblacktree;

import sun.misc.SharedSecrets;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.*;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;

/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 *
 * <p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>HashMap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 * <p>
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 *
 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 * @author Doug Lea
 * @author Josh Bloch
 * @author Arthur van Hoff
 * @author Neal Gafter
 * @see Object#hashCode()
 * @see Collection
 * @see Map
 * @see TreeMap
 * @see Hashtable
 * @since 1.2
 */
public class HashMap<K, V> extends AbstractMap<K, V>
        implements Map<K, V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    /*
     * Implementation notes.
     *
     * This map usually acts as a binned (bucketed) hash table, but
     * when bins get too large, they are transformed into bins of
     * TreeNodes, each structured similarly to those in
     * java.util.TreeMap. Most methods try to use normal bins, but
     * relay to TreeNode methods when applicable (simply by checking
     * instanceof a node).  Bins of TreeNodes may be traversed and
     * used like any others, but additionally support faster lookup
     * when overpopulated. However, since the vast majority of bins in
     * normal use are not overpopulated, checking for existence of
     * tree bins may be delayed in the course of table methods.
     *
     * 实现说明
     * HashMap通常被看成是一个hash table容器,不过当这个容器变得很大时,就会转换成TreeNodes类型的容器,
     * 这种容器与TreeMap的结构很类似. HashMap中大多数都是使用的hash table容器,但是在适当的时候会转成TreeNode.
     * 红黑树(Bins of TreeNodes)可以像其容器一样进行遍历和使用,而且在数据量时,支持更快的查找.
     * 然而,大多数情况,hash table存储就可以了, 所以在检测是否存在tree bin结构时,可能造成延迟
     *
     *
     * Tree bins (i.e., bins whose elements are all TreeNodes) are
     * ordered primarily by hashCode, but in the case of ties, if two
     * elements are of the same "class C implements Comparable<C>",
     * type then their compareTo method is used for ordering. (We
     * conservatively check generic types via reflection to validate
     * this -- see method comparableClassFor).  The added complexity
     * of tree bins is worthwhile in providing worst-case O(log n)
     * operations when keys either have distinct hashes or are
     * orderable, Thus, performance degrades gracefully under
     * accidental or malicious usages in which hashCode() methods
     * return values that are poorly distributed, as well as those in
     * which many keys share a hashCode, so long as they are also
     * Comparable. (If neither of these apply, we may waste about a
     * factor of two in time and space compared to taking no
     * precautions. But the only known cases stem from poor user
     * programming practices that are already so slow that this makes
     * little difference.)
     *
     * 红黑树是首先使用hashCode进行排序. 其次是调用compareTo方法进行比较(通过反射去检测它的泛型,具体方法见comparableClassFor),
     * 当key拥有不同的hashCode或者是有序时,时间复杂度是O(log n), 所以说引入红黑树是值得的.
     *
     *
     * Because TreeNodes are about twice the size of regular nodes, we
     * use them only when bins contain enough nodes to warrant use
     * (see TREEIFY_THRESHOLD). And when they become too small (due to
     * removal or resizing) they are converted back to plain bins.  In
     * usages with well-distributed user hashCodes, tree bins are
     * rarely used.  Ideally, under random hashCodes, the frequency of
     * nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average for the default resizing
     * threshold of 0.75, although with a large variance because of
     * resizing granularity. Ignoring variance, the expected
     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
     * factorial(k)). The first values are:
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     *
     * The root of a tree bin is normally its first node.  However,
     * sometimes (currently only upon Iterator.remove), the root might
     * be elsewhere, but can be recovered following parent links
     * (method TreeNode.root()).
     *
     * All applicable internal methods accept a hash code as an
     * argument (as normally supplied from a public method), allowing
     * them to call each other without recomputing user hashCodes.
     * Most internal methods also accept a "tab" argument, that is
     * normally the current table, but may be a new or old one when
     * resizing or converting.
     *
     * When bin lists are treeified, split, or untreeified, we keep
     * them in the same relative access/traversal order (i.e., field
     * Node.next) to better preserve locality, and to slightly
     * simplify handling of splits and traversals that invoke
     * iterator.remove. When using comparators on insertion, to keep a
     * total ordering (or as close as is required here) across
     * rebalancings, we compare classes and identityHashCodes as
     * tie-breakers.
     *
     * The use and transitions among plain vs tree modes is
     * complicated by the existence of subclass LinkedHashMap. See
     * below for hook methods defined to be invoked upon insertion,
     * removal and access that allow LinkedHashMap internals to
     * otherwise remain independent of these mechanics. (This also
     * requires that a map instance be passed to some utility methods
     * that may create new nodes.)
     *
     * The concurrent-programming-like SSA-based coding style helps
     * avoid aliasing errors amid all of the twisty pointer operations.
     */

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K, V> implements Map.Entry<K, V> {
        final int hash;
        final K key;
        V value;
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final String toString() {
            return key + "=" + value;
        }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c;
            Type[] ts, as;
            Type t;
            ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType) t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     */
    @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable) k).compareTo(x));
    }

    /**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K, V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K, V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param initialCapacity the initial capacity
     * @param loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *                                  or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                    initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                    loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param m the map whose mappings are to be placed in this map
     * @throws NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * @param m     the map
     * @param evict false when initially constructing this map, else
     *              true (relayed to method afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float) s / loadFactor) + 1.0F;
                int t = ((ft < (float) MAXIMUM_CAPACITY) ?
                        (int) ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            } else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key  the key
     * @return the node, or null if none
     */
    final Node<K, V> getNode(int hash, Object key) {
        Node<K, V>[] tab;
        Node<K, V> first, e;
        int n;
        K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     *
     * @param key The key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key   key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
     * (A <tt>null</tt> return can also indicate that the map
     * previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash         hash for key
     * @param key          the key
     * @param value        the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict        if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K, V> e;
            K k;
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            else {
                // 循环遍历链表节点
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        //创建一个Node节点,然后通过尾插法添加到链表上
                        p.next = newNode(hash, key, value, null);
                        // 链表节点等于8时开始转红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            // 开始转树
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K, V>[] resize() {
        Node<K, V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        } else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float) newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes", "unchecked"})
        Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K, V> e;
                // 遍历oldTab中的每个元素,然后将其移动到新的tab中去
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null) {  //key无hash冲突的情况
                        newTab[e.hash & (newCap - 1)] = e;
                    } else if (e instanceof TreeNode)
                        ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);

                    else { // 链表Node的情况
                        Node<K, V> loHead = null, loTail = null;
                        Node<K, V> hiHead = null, hiTail = null;
                        Node<K, V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            } else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K, V>[] tab, int hash) {
        int n;  // table的长度
        int index;  // 当前添加的key在tab中的位置
        Node<K, V> e; // 当前添加的值的节点所在链表的头节点(第一次)

        // 为啥table的长度小于MIN_TREEIFY_CAPACITY 也要调用resize方法呢?
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();

        else if ((e = tab[index = (n - 1) & hash]) != null) {
            // hd : 头节点
            // tl : 尾节点
            TreeNode<K, V> hd = null, tl = null;
            do {
                // 将普通Node节点转换成TreeNode节点,
                TreeNode<K, V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p; // 第一个肯定是链表的头节头,赋值给了hd
                else {
                    // 将tl与p进行双向绑定
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p; // 尾插法, 每次遍历转换成TreeNode节点都添加到上一个节点的尾部
            } while ((e = e.next) != null);
            // 将头节点放在tab表中的index位置
            if ((tab[index] = hd) != null)
                // 下面才是真正的转树方法
                hd.treeify(tab);
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     * <tt>null</tt> if there was no mapping for <tt>key</tt>.
     * (A <tt>null</tt> return can also indicate that the map
     * previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Node<K, V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * @param hash       hash for key
     * @param key        the key
     * @param value      the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable    if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K, V> removeNode(int hash, Object key, Object value,
                                boolean matchValue, boolean movable) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
            Node<K, V> node = null, e;
            K k;
            V v;
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        Node<K, V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     * specified value
     */
    public boolean containsValue(Object value) {
        Node<K, V>[] tab;
        V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                            (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<K> iterator() {
            return new KeyIterator();
        }

        public final boolean contains(Object o) {
            return containsKey(o);
        }

        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }

        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super K> action) {
            Node<K, V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<V> iterator() {
            return new ValueIterator();
        }

        public final boolean contains(Object o) {
            return containsValue(o);
        }

        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super V> action) {
            Node<K, V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K, V>> entrySet() {
        Set<Map.Entry<K, V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
        public final int size() {
            return size;
        }

        public final void clear() {
            HashMap.this.clear();
        }

        public final Iterator<Map.Entry<K, V>> iterator() {
            return new EntryIterator();
        }

        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
            Object key = e.getKey();
            Node<K, V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }

        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }

        public final Spliterator<Map.Entry<K, V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }

        public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
            Node<K, V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K, V> e;
        V v;
        if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K, V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        } else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K, V> e;
        V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null &&
                (oldValue = e.value) != null) {
            V v = remappingFunction.apply(key, oldValue);
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            } else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            } else
                removeNode(hash, key, null, false, true);
        } else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first;
        int n, i;
        int binCount = 0;
        TreeNode<K, V> t = null;
        Node<K, V> old = null;
        if (size > threshold || (tab = table) == null ||
                (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            else {
                Node<K, V> e = first;
                K k;
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            } else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K, V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K, V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K, V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization

    /**
     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
     * values themselves are not cloned.
     *
     * @return a shallow copy of this map
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K, V> result;
        try {
            result = (HashMap<K, V>) super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    final float loadFactor() {
        return loadFactor;
    }

    final int capacity() {
        return (table != null) ? table.length :
                (threshold > 0) ? threshold :
                        DEFAULT_INITIAL_CAPACITY;
    }

    /**
     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
     * serialize it).
     *
     * @serialData The <i>capacity</i> of the HashMap (the length of the
     * bucket array) is emitted (int), followed by the
     * <i>size</i> (an int, the number of key-value
     * mappings), followed by the key (Object) and value (Object)
     * for each key-value mapping.  The key-value mappings are
     * emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /**
     * Reconstitute the {@code HashMap} instance from a stream (i.e.,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
            throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                    loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                    mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float) mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                    DEFAULT_INITIAL_CAPACITY :
                    (fc >= MAXIMUM_CAPACITY) ?
                            MAXIMUM_CAPACITY :
                            tableSizeFor((int) fc));
            float ft = (float) cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                    (int) ft : Integer.MAX_VALUE);

            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
            @SuppressWarnings({"rawtypes", "unchecked"})
            Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators

    abstract class HashIterator {
        Node<K, V> next;        // next entry to return
        Node<K, V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K, V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {
                } while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K, V> nextNode() {
            Node<K, V>[] t;
            Node<K, V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {
                } while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K, V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
            implements Iterator<K> {
        public final K next() {
            return nextNode().key;
        }
    }

    final class ValueIterator extends HashIterator
            implements Iterator<V> {
        public final V next() {
            return nextNode().value;
        }
    }

    final class EntryIterator extends HashIterator
            implements Iterator<Map.Entry<K, V>> {
        public final Map.Entry<K, V> next() {
            return nextNode();
        }
    }

    /* ------------------------------------------------------------ */
    // spliterators

    static class HashMapSpliterator<K, V> {
        final HashMap<K, V> map;
        Node<K, V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K, V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K, V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K, V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<K> {
        KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<V> {
        ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K, V>
            extends HashMapSpliterator<K, V>
            implements Spliterator<Map.Entry<K, V>> {
        EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K, V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                    new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                            expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K, V> m = map;
            Node<K, V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            } else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                    (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K, V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K, V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K, V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                    Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     */

    // Create a regular (non-tree) node
    Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    void afterNodeAccess(Node<K, V> p) {
    }

    void afterNodeInsertion(boolean evict) {
    }

    void afterNodeRemoval(Node<K, V> p) {
    }

    // Called only from writeObject, to ensure compatible ordering.
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K, V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
        TreeNode<K, V> parent;  // red-black tree links
        TreeNode<K, V> left;
        TreeNode<K, V> right;
        TreeNode<K, V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K, V> next) {
            super(hash, key, val, next);
        }

        /**
         * 返回该节点的根节点
         */
        final TreeNode<K, V> root() {
            for (TreeNode<K, V> r = this, p; ; ) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         */
        static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
            int n;  //tab 的length
            if (root != null && tab != null && (n = tab.length) > 0) {
                // tab的index一直都是用这个小算法去计算的, 大佬你为什么封装成一个方法呢???????????
                int index = (n - 1) & root.hash;
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index]; //拿到tab中的元素
                if (root != first) {  // 如果这个root已经不是tab数组中的元素,说明tree旋转了, 根节点发生了变化
                    Node<K, V> rn;
                    tab[index] = root;  // 将root放进入,覆盖了tab数组中原来index位置的数据
                    TreeNode<K, V> rp = root.prev; // 你妹的,prev你又出现了?????

                    /**
                     * 老子服了,,.,,,,,,
                     * 你把root节点从这个链上摘出来, 放到原先链的前面, 我忍了,,,
                     * 但是你把rp和rn拿出来互相引用, 后面又没地方去使用,,你想干咩也???
                     */

                    if ((rn = root.next) != null)
                        ((TreeNode<K, V>) rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;


                    // 把root放在原先链的前面, 这又不是前插法了.....................
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
            TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                TreeNode<K, V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                        (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         */
        final TreeNode<K, V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * 通过两层for循环完成TreeNode链表到红黑树的转换
         * 外层遍历链表中的节点, 内层循环确定该节点应该添加到树的那个位置上
         *
         * @return root of tree
         */
        final void treeify(Node<K, V>[] tab) {
            TreeNode<K, V> root = null;
            // this就是hd,头节点
            for (TreeNode<K, V> x = this, next; x != null; x = next) {
                // 第一次循环时,x肯定是头节点hd
                next = (TreeNode<K, V>) x.next;
                // 声明了左右节点都是null
                x.left = x.right = null;
                if (root == null) {  // 第一次循环,root肯定是空,所以进入if代码块.
                    x.parent = null;  // 头节点的父节点肯定是null
                    x.red = false;   // 根据红黑树的性,根节点肯定是黑色
                    root = x;   // 将链表的头节点弄成树的root(根)节点
                } else {  // 非首次for循环进入else代码块,x节点是即将要添加到树上的TreeNode节点.
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;

                    // 这个for循环有点意思 , 什么条件让它一直执行下去的呢?
                    for (TreeNode<K, V> p = root; ; ) {
                        int dir;  // 两临两个TreeNode节点hashCode值的比较结果,用于确定节点在树中的位置
                        int ph;  // 已经是树上的节点的hash值
                        K pk = p.key;
                        if ((ph = p.hash) > h)  // 树上结点的hash大于待加入树上的节点的hash值, dir = -1, 左插
                            dir = -1;
                        else if (ph < h)   // 树上结点的hash小于待加入树上的节点的hash值, dir =1 , 右插
                            dir = 1;
                        else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)
                            //调用了compareTo方法比较,结果返回1 或者 -1 . 没有0的情况
                            dir = tieBreakOrder(k, pk);
                        // 整个了临时变量 , p肯定会成为待添加节点x的父节点
                        TreeNode<K, V> xp = p;
                        // dir = -1 , 左插.  dir = 1 ,右插
                        // 这行代码很有意思呀,它是内层for循环能执行下去的关键
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;  // xp成了x的父节点
                            if (dir <= 0)
                                xp.left = x;  // 左子树上
                            else
                                xp.right = x;  // 右子树上
                            // 红黑树添加了元素,平衡有可能被破坏,这儿需要进行旋转或者变色
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         * 由TreeNode类型转成Node类型节点,也是从头节点开始依次往下进行的
         */
        final Node<K, V> untreeify(HashMap<K, V> map) {
            Node<K, V> hd = null, tl = null;
            // this为啥是Node类型? 因为TreeNode是Node的子类.
            for (Node<K, V> q = this; q != null; q = q.next) {
                Node<K, V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;  // TreeNode链的头转成了Node链的头
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         * 树结构的putVal方法 , 该方法只负责找到合适的位置插入元素, 平衡啥的都交给balanceInsertion方法去完成
         *
         * @param h   : k的hash值,
         * @param k   : put方法的key
         * @param v   : put方法的value
         * @param map : 这儿传入map变量的目的,竟然为了调用了它的newTreeNode方法创建一个TreeNode对象.....好点奇怪....
         */
        final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            // 找到当前节点this所在树的根节点
            TreeNode<K, V> root = (parent != null) ? root() : this;
            // 从根节点开始遍历这颗树
            for (TreeNode<K, V> p = root; ; ) {
                int dir; // hash值比较的结果,这个值的大小决定了当前插入的节点是插左还是插右
                int ph; // 父节点的hash
                K pk;  // 父节点的key
                if ((ph = p.hash) > h) {  //父节的hash与当前put key的hash进行比较
                    dir = -1;
                } else if (ph < h) {
                    dir = 1;
                } else if ((pk = p.key) == k || (k != null && k.equals(pk))) {
                    return p;  // key已经存在了
                } else if (  // 这儿是使用compareTo方法去比较, 反正就是要比较出大小来
                        (kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K, V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                                (q = ch.find(h, k, kc)) != null) ||
                                ((ch = p.right) != null &&
                                        (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }
                // 把p弄个临时变量存起来, 因为p马上就要变了,
                TreeNode<K, V> xp = p;
                // 根据dir的大小来决定是往左遍历,还是往右遍历...
                // 注意呀, 下面这个if代码也是很有意思的, 如果p(此p以非前p了)不为空,就会循环执行前面的逻辑呀
                if ((p = (dir <= 0) ? p.left : p.right) == null) {  // 进入if, 说明找到了可插入的点了,
                    // 这儿为啥用到了Node类的属性呢????
                    // 为啥要获取它的next节点信息
                    Node<K, V> xpn = xp.next;
                    // 为啥创建TreeNode对象时要去关联next节点???????????????
                    // 难道是为了tree退化成链表时使用????
                    TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp; // 这是干吗? 有啥用?????????????????????????
                    if (xpn != null) {
                        ((TreeNode<K, V>) xpn).prev = x;// 你妹的, 不是已经是有关系了吗, 你还来搞另一条关系干啥, 你到底想哪样???
                    }
                    // 因为添加了一个节点,树会自平衡, 原root节点可能会发生改变,所以moveRootToFront会将新的root节点,移到头部去
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
            TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                    (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K, V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K, V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red;
                s.red = p.red;
                p.red = c; // swap colors
                TreeNode<K, V> sr = s.right;
                TreeNode<K, V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                } else {
                    TreeNode<K, V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            } else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K, V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map   the map
         * @param tab   the table for recording bin heads
         * @param index the index of the table being split
         *              当前节点在oldTab中的index值
         * @param bit   the bit of hash to split on
         *              oldTab的length
         */
        final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
            TreeNode<K, V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K, V> loHead = null, loTail = null;
            TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            // 这里同样使用了尾插法,将链表拆分成了两个新的链表
            for (TreeNode<K, V> e = b, next; e != null; e = next) {
                next = (TreeNode<K, V>) e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc; // 累加计数
                } else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                // 如果拆分之后低位链表节点个数小于6, 要退化成普通节点
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)// 已经由Node类型转成了TreeNode类型
                        // 转树
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        // 左旋
        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
            // 忧伤, 读代码 r 节点是左旋的支撑点,
            TreeNode<K, V> r, pp, rl;
            if (p != null && (r = p.right) != null) {// 这一步,p的右节点是r, 这个r不就是前面的x吗


                // 支撑节点的左子变成原父节点的右子树.
                // 因为下面两行的功能对于下面的if...else if...else都适用,所以提到前面来了
                if ((rl = p.right = r.left) != null)  // 如果等于,就说明当前添加节点无左子树
                    rl.parent = p;


                // 下面三个条件一起看
                if ((pp = r.parent = p.parent) == null) { // if情况,p是根节点(这种情况最简单)
                    (root = r).red = false;  // r成了根节点  ------------第一种情况
                } else if (pp.left == p) {
                    pp.left = r;   // ------------第二种情况
                } else {  // 这种情况应该是: p是pp的右子树
                    pp.right = r;  // ------------第三种情况
                }

                // 下面两句代码的意思就是: p成了r左子树
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        /**
         * 右旋 ,其实跟左旋是一样一样的道理,只是旋转的中心节点不同而已
         *
         * @param root 根节点
         * @param p    其[实是当前节点的爷节点
         * @param <K>
         * @param <V>
         * @return
         */
        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
            TreeNode<K, V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                // 将l的右子树移动到p的左子树位置 (右旋就是干这事嘛,)
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;


                if ((pp = l.parent = p.parent) == null)  // p就是根节点
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        /**
         * 这个方法主要是在干变色的事, 并判断何时该旋转,
         * 而具体的旋转逻辑由 rotateLeft 和 rotateRight 两个方法完成
         *
         * @param root
         * @param x    刚添加到树上的节点
         * @param <K>
         * @param <V>
         * @return
         */
        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
            // 根据红黑树的性质,新添加的元素节点一定是红色
            x.red = true;
            /**
             * xp : x节点的父节点
             * xpp : x节点的父父节点,爷节点
             * xppl : x爷节点左子节点
             * xppr : x爷节点的右子节点
             */
            // 又是一个无限循环
            for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                // 如果x节点的父节点是null,
                if ((xp = x.parent) == null) {
                    // 那么x节点就会成为root节点,变黑色
                    x.red = false;
                    return x;
                } else if (!xp.red || (xpp = xp.parent) == null)  // 如果x的父节点是黑色或者 x的爷爷节点是null
                    /*
                       如何理解?
                       !xp.red代码分析: x是新增量节点,肯定是红色,xp父节点不是红色, 所以肯定不需要变色,也不需要旋转, 红黑树是平衡的,直接返回root节点即可
                       (xpp = xp.parent) == null 分析: 爷节点是空,说明红黑树的深度为2. 所以无论x是添加到left ,还是right, 都是平衡的,直接返回root节点即可

                     */
                    return root;

                /*
                 *如果代码执行到这儿,那么x一定有父节点和爷节点,且爷节点是黑,那么父节点就是红;
                 */
                if (xp == (xppl = xpp.left)) { // xp在爷节点的左子树上
                    /*
                     *if的变色逻辑就是:
                     *  叔,父都是红色(由它可以推出爷是黑), 这时需要变色
                     *  叔,父由红变黑,爷由黑变红
                     *  只需变色即可重新自平衡
                     */
                    if ((xppr = xpp.right) != null && xppr.red) { // x的右叔是红
                        xppr.red = false;  //右叔变黑
                        xp.red = false; // 父变黑
                        xpp.red = true; // 爷由黑变红
                        x = xpp;  // 当前节点就变成爷节点了.
                    } else {
                        /**
                         * 进入这个else的条件有:
                         * 1. 右叔为空,无节点(这种情况如果存在,是单左旋)
                         * 2. 右叔存在,但是为黑色
                         */
                        if (x == xp.right) {// x在xp的右子树上
                            // 左旋(以父节点作为支点左旋,所以将xp赋值给x)
                            // 即然这儿发生左旋, 那么xp一定是红,右叔一定是黑...
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;  // 这句代码的作用呢????????????
                        }

                        if (xp != null) {
                            // 这个判断是什么意思 ??????????
                            // 为什么再一次判断xp不为空???????
                            // 经历过rotateLeft之后的xp与未rotateLeft之前xp是同一个节点吗?????  答案肯定是!
                            xp.red = false;// 父黑
                            if (xpp != null) {
                                xpp.red = true;  // 爷红
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                                                     TreeNode<K, V> x) {
            for (TreeNode<K, V> xp, xpl, xpr; ; ) {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                } else if (x.red) {
                    x.red = false;
                    return root;
                } else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        } else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                        null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                                (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         */
        static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
            TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                    tb = t.prev, tn = (TreeNode<K, V>) t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}
View Code

 未完待续....

 

  

  

原文地址:https://www.cnblogs.com/z-qinfeng/p/12115647.html