线性代数复习(3)------矩阵乘法与逆

矩阵乘法

前提

两个矩阵相乘AB=C,A的列数要等于B的行数,否则无法相乘。

行列相乘

首先是最直接的行列相乘:
[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nm} \end{bmatrix} a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \end{bmatrix}= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] egin{bmatrix}c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{nh} \end{bmatrix} c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh

生成的项中 c i j = ∑ l = 1 m a i l b l j c_{ij}=sum_{l=1}^ma_{il}b_{lj} cij=l=1mailblj
即左边的一行乘右边的一列生成矩阵的一个元素。
由此也可以直接的看出AB与BA是不同的。
在看看前后维度的变化:A是nm,B是mh,生成的C是n*h。

列相乘

[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nm} \end{bmatrix} a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \end{bmatrix}= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] egin{bmatrix}c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{nh} \end{bmatrix} c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh
还是原来的运算,但是我们使用列的线性组合来理解。
[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nm} \end{bmatrix} a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = left[ egin{array} {c| c | c | c | c} b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \ end{array} ight]= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] left[ egin{array} {c| c | c | c | c} c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{ nh} \ end{array} ight] c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh
细分到每一列就是:
[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nm} \end{bmatrix} a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 1 j . . . b i j . . . b m j ] = egin{bmatrix}b_{1j} \... \b_{ij} \... \b_{mj} \end{bmatrix}= b1j...bij...bmj= [ c 1 j . . . c i j . . . c n j ] egin{bmatrix}c_{1j} \... \c_{ij} \... \c_{nj} \end{bmatrix} c1j...cij...cnj
即列之间的线性组合:
[ a 11 . . . a i 1 . . . a n 1 ] ∗ b 1 j + . . . + egin{bmatrix}a_{11} \... \a_{i1} \... \a_{n1} \end{bmatrix}*b_{1j}+...+ a11...ai1...an1b1j+...+ [ a 1 j . . . a i j . . . a n j ] ∗ b i j + . . . + egin{bmatrix}a_{1j} \... \a_{ij} \... \a_{nj} \end{bmatrix}*b_{ij}+...+ a1j...aij...anjbij+...+ [ a 11 . . . a i 1 . . . a n 1 ] ∗ b m j = egin{bmatrix}a_{11} \... \a_{i1} \... \a_{n1} \end{bmatrix}*b_{mj}= a11...ai1...an1bmj= [ c 1 j . . . c i j . . . c n j ] egin{bmatrix}c_{1j} \... \c_{ij} \... \c_{nj} \end{bmatrix} c1j...cij...cnj

行相乘

[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nm} \end{bmatrix} a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \end{bmatrix}= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] egin{bmatrix}c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{nh} \end{bmatrix} c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh
同样的方法处理:
[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] left[ egin{array} {c c c c c} a_{11} & ... & a_{1j} & ...& a_{1m} \ hline... & ... & ... & ...& ... \ hline a_{i1} &... & a_{ij} & ...& a_{im} \hline ... & ... &... & ...& ... \hline a_{n1} & ... & a_{nj} & ...& a_{nm} \ end{array} ight] a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \end{bmatrix}= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh=
[ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] left[ egin{array} {c c c c c} c_{11} & ... & c_{1j} & ...& c_{1h} \hline ... & ... & ... & ...& ... \hline c_{i1} &... & c_{ij} & ...& c_{ih} \hline ... & ... &... & ...& ... \hline c_{n1} & ... & c_{nj} & ...& c_{ nh} \ end{array} ight] c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh
细分到每一行就是B中行之间的线性组合:
[ a i 1 . . . a i j . . . a i m ] egin{bmatrix}a_{i1} &... &a_{ij} &... &a_{im} \end{bmatrix} [ai1...aij...aim] [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{m1} & ... & b_{mj} & ...& b_{mh} \end{bmatrix}= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c i 1 . . . c i j . . . c i m ] egin{bmatrix}c_{i1} &... &c_{ij} &... &c_{im} \end{bmatrix} [ci1...cij...cim]
展开后有:
a i 1 ∗ [ b 11 . . . b 1 j . . . b 1 h ] + . . . + a_{i1}*egin{bmatrix}b_{11} &... &b_{1j} &... &b_{1h} \end{bmatrix}+...+ ai1[b11...b1j...b1h]+...+ a i j ∗ [ b i 1 . . . b i j . . . b i h ] + . . . + a_{ij}*egin{bmatrix}b_{i1} &... &b_{ij} &... &b_{ih} \end{bmatrix}+...+ aij[bi1...bij...bih]+...+ a i m ∗ [ b m 1 . . . b m j . . . b m h ] = a_{im}*egin{bmatrix}b_{m1} &... &b_{mj} &... &b_{mh} \end{bmatrix}= aim[bm1...bmj...bmh]= [ c i 1 . . . c i j . . . c i m ] egin{bmatrix}c_{i1} &... &c_{ij} &... &c_{im} \end{bmatrix} [ci1...cij...cim]

列行相乘

这种方式并不那么直观,但在之前的基础上应该可以很好理解:
[ a 11 . . . a 1 j . . . a 1 m . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i m . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n m ] left[ egin{array} {c| c | c | c | c} a_{11} & ... & a_{1j} & ...& a_{1m} \... & ... & ... & ...& ... \a_{i1} &... &a_{ij} & ...& a_{im} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{ nm} \ end{array} ight] a11...ai1...an1...............a1j...aij...anj...............a1m...aim...anm [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b m 1 . . . b m j . . . b m h ] = left[ egin{array} {c c c c c} b_{11} & ... & b_{1j} & ...& b_{1h} \hline ... & ... & ... & ...& ... \hline b_{i1} &... & b_{ij} & ...& b_{ih} \hline ... & ... &... & ...& ... \hline b_{m1} & ... & b_{mj} & ...& b_{ mh} \ end{array} ight]= b11...bi1...bm1...............b1j...bij...bmj...............b1h...bih...bmh= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] egin{bmatrix}c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{nh} \end{bmatrix} c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh

将列与行单独的拆开后有:
[ a 1 j . . . a i j . . . a n j ] egin{bmatrix}a_{1j} \... \a_{ij} \... \a_{nj} \end{bmatrix} a1j...aij...anj [ b i 1 . . . b i j . . . b i h ] = egin{bmatrix}b_{i1} &... &b_{ij} &... &b_{ih} \end{bmatrix}= [bi1...bij...bih]= [ c ^ 11 . . . c ^ 1 j . . . c ^ 1 h . . . . . . . . . . . . . . . c ^ i 1 . . . c ^ i j . . . c ^ i h . . . . . . . . . . . . . . . c ^ n 1 . . . c ^ n j . . . c ^ n h ] egin{bmatrix} hat c_{11} & ... & hat c_{1j} & ...& hat c_{1h} \... & ... & ... & ...& ... \hat c_{i1} &... & hat c_{ij} & ...& hat c_{ih} \... & ... &... & ...& ... \hat c_{n1} & ... & hat c_{nj} & ...& hat c_{nh} \end{bmatrix} c^11...c^i1...c^n1...............c^1j...c^ij...c^nj...............c^1h...c^ih...c^nh

这里有一个性质是对于得到的矩阵 [ c ^ 11 . . . c ^ 1 j . . . c ^ 1 h . . . . . . . . . . . . . . . c ^ i 1 . . . c ^ i j . . . c ^ i h . . . . . . . . . . . . . . . c ^ n 1 . . . c ^ n j . . . c ^ n h ] egin{bmatrix} hat c_{11} & ... & hat c_{1j} & ...& hat c_{1h} \... & ... & ... & ...& ... \hat c_{i1} &... & hat c_{ij} & ...& hat c_{ih} \... & ... &... & ...& ... \hat c_{n1} & ... & hat c_{nj} & ...& hat c_{nh} \end{bmatrix} c^11...c^i1...c^n1...............c^1j...c^ij...c^nj...............c^1h...c^ih...c^nh所有的行向量都相互平行所有的列向量也都相互平行
合并之后有:
∑ l = 1 m sum_{l=1}^m l=1m [ a 1 l . . . a i l . . . a n l ] egin{bmatrix}a_{1l} \... \a_{il} \... \a_{nl} \end{bmatrix} a1l...ail...anl [ b l 1 . . . b l j . . . b l h ] = egin{bmatrix}b_{l1} &... &b_{lj} &... &b_{lh} \end{bmatrix}= [bl1...blj...blh]= [ c 11 . . . c 1 j . . . c 1 h . . . . . . . . . . . . . . . c i 1 . . . c i j . . . c i h . . . . . . . . . . . . . . . c n 1 . . . c n j . . . c n h ] egin{bmatrix}c_{11} & ... & c_{1j} & ...& c_{1h} \... & ... & ... & ...& ... \c_{i1} &... & c_{ij} & ...& c_{ih} \... & ... &... & ...& ... \c_{n1} & ... & c_{nj} & ...& c_{nh} \end{bmatrix} c11...ci1...cn1...............c1j...cij...cnj...............c1h...cih...cnh

c i j = ∑ l = 1 m a i l ∗ b l j c_{ij}=sum_{l=1}^ma_{il}*b_{lj} cij=l=1mailblj与行列相乘相符。

[ a 11 . . . a 1 j . . . a 1 h . . . . . . . . . . . . . . . a i 1 . . . a i j . . . a i h . . . . . . . . . . . . . . . a n 1 . . . a n j . . . a n h ] + egin{bmatrix}a_{11} & ... & a_{1j} & ...& a_{1h} \... & ... & ... & ...& ... \a_{i1} &... & a_{ij} & ...& a_{ih} \... & ... &... & ...& ... \a_{n1} & ... & a_{nj} & ...& a_{nh} \end{bmatrix}+ a11...ai1...an1...............a1j...aij...anj...............a1h...aih...anh+ [ b 11 . . . b 1 j . . . b 1 h . . . . . . . . . . . . . . . b i 1 . . . b i j . . . b i h . . . . . . . . . . . . . . . b n 1 . . . b n j . . . b n h ] = egin{bmatrix}b_{11} & ... & b_{1j} & ...& b_{1h} \... & ... & ... & ...& ... \b_{i1} &... & b_{ij} & ...& b_{ih} \... & ... &... & ...& ... \b_{n1} & ... & b_{nj} & ...& b_{nh} \end{bmatrix}= b11...bi1...bn1...............b1j...bij...bnj...............b1h...bih...bnh= [ a 11 + b 11 . . . a 1 j + b 1 j . . . a 1 h + b 1 h . . . . . . . . . . . . . . . a i 1 + b i 1 . . . a i j + b i j . . . a i h + b i h . . . . . . . . . . . . . . . a n 1 + b n 1 . . . a n j + b n j . . . a n n + b n h ] egin{bmatrix}a_{11}+b_{11} & ... & a_{1j}+b_{1j} & ...& a_{1h}+b_{1h} \... & ... & ... & ...& ... \a_{i1}+b_{i1} &... & a_{ij}+b_{ij} & ...& a_{ih}+b_{ih} \... & ... &... & ...& ... \a_{n1}+b_{n1} & ... & a_{nj}+b_{nj} & ...& a_{nn}+b_{nh} \end{bmatrix} a11+b11...ai1+bi1...an1+bn1...............a1j+b1j...aij+bij...anj+bnj...............a1h+b1h...aih+bih...ann+bnh(矩阵相加)

分块运算

对于一些大的矩阵也可以进行矩阵的划分,化成几块来进行运算,但是划分之后的矩阵块也要符合乘法运算的条件(即块状的矩阵左边的列数等于右边的行数)。
[ A 11 A 12 A 21 A 22 ] [ B 11 B 12 B 21 B 22 ] = [ A 11 B 11 + A 12 B 21 A 11 B 12 + A 12 B 22 A 21 B 11 + A 22 B 21 A 21 B 12 + A 22 B 22 ] left[ egin{array} {c | c} A_{11} & A_{12} \hline A_{21} & A_{22} \ end{array} ight]left[ egin{array} {c | c} B_{11} & B_{12} \hline B_{21} & B_{22} \ end{array} ight]=left[ egin{array} {c | c} A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \hline A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22} \ end{array} ight] [A11A21A12A22][B11B21B12B22]=[A11B11+A12B21A21B11+A22B21A11B12+A12B22A21B12+A22B22]

A − 1 A = E = A A − 1 A^{-1}A=E=AA^{-1} A1A=E=AA1
(首先是方阵)可逆矩阵(非奇异矩阵)的左逆等于右逆,乘积为单位矩阵

奇异矩阵

首先看一下这个例子 [ 1 3 2 6 ] egin{bmatrix}1&3\2&6\end{bmatrix} [1236]它是否含有逆矩阵?
我们把逆矩阵看作对原矩阵的线性组合处理,那么显然我们找不到一种矩阵变化来将 [ 1 3 2 6 ] egin{bmatrix}1&3\2&6\end{bmatrix} [1236]变为单位矩阵(两行之间平行,两列之间也平行,无法转化为E的形式),所以有存在任意两行或两列平行的矩阵为奇异矩阵
或者我们可以换一种定义:如果一个方阵没有逆,我们可以通过寻找一个非零向量X使得 A X = 0 AX=0 AX=0成立来描述。(线性相关性)比如上面的矩阵 [ 1 3 2 6 ] egin{bmatrix}1&3\2&6\end{bmatrix} [1236]对应的X是 [ 3 − 1 ] egin{bmatrix}3\-1end{bmatrix} [31]
简单的证明一下:
假设 A A A存在逆矩阵,那么有 A − 1 A X = 0 A^{-1}AX=0 A1AX=0,即 X = 0 X=0 X=0,与题目所给的条件矛盾。

求解非奇异矩阵(Gauss-Jordan)

现在我们有 [ 1 3 2 7 ] egin{bmatrix}1&3\2&7\end{bmatrix} [1237] [ a c b d ] = egin{bmatrix}a&c\b&d\end{bmatrix}= [abcd]= [ 1 0 0 1 ] egin{bmatrix}1&0\0&1\end{bmatrix} [1001]这个方程,我们的目的就是求出对应的a,b,c,d,由上面的乘法思想我们使用列向量来处理:

[ 1 3 2 7 ] egin{bmatrix}1&3\2&7\end{bmatrix} [1237] [ a b ] = egin{bmatrix}a\b\end{bmatrix}= [ab]= [ 1 0 ] egin{bmatrix}1\0\end{bmatrix} [10] [ 1 3 2 7 ] egin{bmatrix}1&3\2&7\end{bmatrix} [1237] [ c d ] = egin{bmatrix}c\d\end{bmatrix}= [cd]= [ 0 1 ] egin{bmatrix}0\1\end{bmatrix} [01]于是问题又变成了解方程组的形式了。(Gauss-Jordan)只不过是同时解多个方程组。

先看看这样的增广矩阵 [ 1 3 1 0 2 7 0 1 ] left[egin{array} {c c | c c} 1&3&1&0\2&7&0&1\end{array} ight] [12371001]是一种 [ A E ] egin{bmatrix}A&E\end{bmatrix} [AE]的形式,我们的目的是将其化成这样的 [ E A − 1 ] egin{bmatrix}E&A^{-1}\end{bmatrix} [EA1]形式,而实际我们的变换的过程就相当于 [ A − 1 ] [A^{-1}] [A1] [ A E ] egin{bmatrix}A&E\end{bmatrix} [AE]
实际变化一下有:

[ 1 0 − 2 1 ] egin{bmatrix}1&0\-2&1\end{bmatrix} [1201] [ 1 3 1 0 2 7 0 1 ] = left[egin{array} {c c | c c} 1&3&1&0\2&7&0&1\end{array} ight]= [12371001]= [ 1 3 1 0 0 1 − 2 1 ] left[egin{array} {c c | c c} 1&3&1&0\0&1&-2&1\end{array} ight] [10311201]

[ 1 − 3 0 1 ] egin{bmatrix}1&-3\0&1\end{bmatrix} [1031] [ 1 0 − 2 1 ] egin{bmatrix}1&0\-2&1\end{bmatrix} [1201] [ 1 3 1 0 2 7 0 1 ] = left[egin{array} {c c | c c} 1&3&1&0\2&7&0&1\end{array} ight]= [12371001]= [ 1 0 7 − 3 0 1 − 2 1 ] left[egin{array} {c c | c c} 1&0&7&-3\0&1&-2&1\end{array} ight] [10017231]

即: [ 7 − 3 − 2 1 ] egin{bmatrix}7&-3\-2&1\end{bmatrix} [7231] [ 1 3 1 0 2 7 0 1 ] = left[egin{array} {c c | c c} 1&3&1&0\2&7&0&1\end{array} ight]= [12371001]= [ 1 0 7 − 3 0 1 − 2 1 ] left[egin{array} {c c | c c} 1&0&7&-3\0&1&-2&1\end{array} ight] [10017231] ( [ A − 1 ] ([A^{-1}] [A1] [ A E ] = [ E A − 1 ] ) egin{bmatrix}A&E\end{bmatrix}=egin{bmatrix}E&A^{-1}\end{bmatrix}) [AE]=[EA1]

原文地址:https://www.cnblogs.com/yanzs/p/13788246.html