《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量

第四章:M-absolute 和 M-square 风险度量

思维导图

从第四章开始比较难了

(M^A)(M^2) 控制了组合预期变化的下限

两个重要不等式的推导

首先有

[V_0 = sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds} ]

[egin{aligned} V_H &= V_0 e^{int_0^H f(s)ds}\ &= sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds} e^{int_0^H f(s)ds}\ &= sum_{t=t_1}^{t_n} CF_t e^{int_t^H f(s)ds} end{aligned} ]

以及

[V_H^{prime} = sum_{t=t_1}^{t_n} CF_t e^{int_t^H f^{prime}(s)ds} ]

那么

[egin{aligned} frac{V_H^{prime} - V_H}{V_H} &= frac{1}{V_0 e^{int_0^H f(s)ds}} sum_{t=t_1}^{t_n} CF_t (e^{int_t^H f^{prime}(s)ds} - e^{int_t^H f(s)ds})\ &=frac{1}{V_0}sum_{t=t_1}^{t_n} CF_t[e^{int_t^H f(s)ds}(e^{int_t^H Delta f(s)ds}-1)]e^{-int_0^H f(s)ds}\ &=frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1) end{aligned} ]

[h(t) = int_t^H Delta f(s)ds ]

关于 (M^A) 的不等式

(Delta f(t)) 的边界分别是 (K_1)(K_2),即 (K_1 le Delta f(t) le K_2)

(H>t)

[h(t) ge K_1(H-t) = K_1 |t-H| ]

(H le t)

[h(t) ge -K_2(t-H) = -K_2|t-H| ]

于是

[h(t) ge min(K_1, -K_2)|t-H| ]

[egin{aligned} min (K_1, -K_2) &= -max(-K_1, K_2)\ &ge -max(|K_1|, |K_2|)\ &=-K_3 end{aligned} ]

[h(t) ge -K_3|t-H| ]

已知

[e^x - 1 ge x ]

那么

[egin{aligned} frac{V_H^{prime} - V_H}{V_H} & =frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}h(t)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds} (-K_3|t-H|)\ & = -K_3M^A end{aligned} ]

关于 (M^2) 的不等式

[frac{dDelta f(t)}{dt} = g(t) le K_4 ]

那么

[egin{aligned} h(t) &= int_t^H Delta f(s)ds\ & = tDelta f(t)|_{t}^{H} - int_t^H s g(s)ds\ & = HDelta f(H) - tDelta f(t) - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + tDelta f(H) - tDelta f(t) - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + tint_t^H g(s)ds - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + int_t^H(t-s) g(s)ds\ end{aligned} ]

(H>t)

[egin{aligned} int_t^H (t-s) g(s)ds & ge int_t^H (t-s) K_4ds\ &=-K_4(t-H)^2/2 end{aligned} ]

(H le t)

[egin{aligned} int_t^H (t-s) g(s)ds & = -int_H^t (t-s) g(s)ds\ & ge -int_H^t (t-s) K_4ds\ & = -K_4(t-H)^2/2 end{aligned} ]

那么

[h(t) ge (H-t)Delta f(H) -K_4(t-H)^2/2 ]

已知

[e^x - 1 ge x ]

那么

[egin{aligned} frac{V_H^{prime} - V_H}{V_H} & =frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}h(t)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds} left((H-t)Delta f(H) -K_4(t-H)^2/2 ight)\ & = (H-D)Delta f(H) -K_4M^2/2 end{aligned} ]

凸性效应(CE)和风险效应(RE)的推导

[egin{aligned} R(H) &= frac{V_H^{prime} - V_0}{V_0}\ &=frac{sum_{t=t_1}^{t_n} CF_t e^{int_t^H f^{prime}(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{sum_{t=t_1}^{t_n} CF_t e^{int_0^H f^{prime}(s)ds - int_0^t f^{prime}(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f^{prime}(s)ds}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{-int_0^t Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f(s) + Delta f(s)ds}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{-int_0^t Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f(s)}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{int_t^H Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ end{aligned} ]

[R_F(H) = e^{int_0^H f(s)ds} - 1 ]

[k(t) = e^{int_t^H Delta f(s)ds} ]

(k(t))(H) 做 Taylor 展开

[egin{aligned} k(t) &= e^{int_t^H Delta f(s)ds}\ &= e^{-int_H^t Delta f(s)ds}\ &= k(H) + (t-H)k'(H) + frac{1}{2}(t-H)^2k''(H) + varepsilon\ &= 1 + (t-H)(-Delta f(H)) + frac{1}{2}(t-H)^2(Delta f(H)^2 - frac{d(Delta f(t))}{dt}|_{t=H}) + varepsilon\ &= 1 + (t-H)(-Delta f(H)) + frac{1}{2}(t-H)^2(Delta f(H)^2 - g(H)) + varepsilon\ end{aligned} ]

代入得到

[egin{aligned} R(H) &= R_F(H) + gamma_1 (D-H) + gamma_2 M^2 + varepsilon\ gamma_1 &= -Delta f(H)(1+R_F(H))\ gamma_2 &= frac{1}{2}(1+R_F(H))(Delta f(H)^2 - g(H))\ gamma_2 &= CE - RE\ CE &= frac{1}{2}(1+R_F(H))Delta f(H)^2\ RE &= frac{1}{2}(1+R_F(H))g(H) end{aligned} ]

原文地址:https://www.cnblogs.com/xuruilong100/p/12024987.html