glm letex 笔记

这是我的letex学习笔记,由于时间有限,只能讲源码和结果贴出:

这里面是广义线性模型的推导过程:

documentclass{article}
usepackage{paralist}
egin{document}
	itle{Generate Linear Model Estimation Note}
author{Xue Zoushi }
date{April 28, 2016}
maketitle
The general procedures:
egin{compactenum}
item General exponential family format
egin{equation}
f(y|	heta) = exp left ( frac{y	heta + b(	heta)}{a(phi)} + c(y,phi) 
ight)
end{equation}
[
ell(	heta|y) =log[f(y|	heta)]= frac{y	heta + b(	heta)}{a(phi)} + c(y,phi)
]
item Some important attributes of log-likelihood
[ E(Y) = mu = frac{partial b(	heta)} {partial 	heta} ]
[ E[S(	heta)]= 0 ]
[ E[frac{partial S}{partial 	heta}] = -E[S(	heta)]^2 ]
[ I(	heta)= Var(S(	heta))= E[S(	heta)]^2 - {E[S(	heta)]}^2 ]
[ Var(Y) = a(phi)[frac{partial^2 b(	heta)}{partial 	heta ^ 2}] ]
item Newton-Raphson and Fisher-scoring
The scalar form of Taylor series
[ ell(	heta) equiv ell(	ilde{	heta}) + (	heta - 	ilde{	heta})
left. frac{partial ell (	heta)}{partial 	heta} 
ight |_{	heta = 	ilde{	heta}} +
frac{1}{2} (	heta - 	ilde{	heta})^2 left. frac{partial ell^2 (	heta)}{partial 	heta^2}

ight |_{	heta = 	ilde{	heta}}]

Set ( partial ell (	heta) / partial 	heta = 0 ) and rearranging terms yields:
[ 	heta equiv 	ilde{	heta} -
left [ left . frac{partial ^2 ell (	heta)}{partial 	heta ^2} 
ight |_{	heta=	ilde{	heta}}
ight ]^{-1}
left [ left . frac{partial ell (	heta)}{partial 	heta} 
ight |_{	heta=	ilde{	heta}} 
ight ] ]

The basic matrix form of Newton-Raphson algorithm:
egin{equation}
	heta equiv 	ilde{	heta} - [H(	ilde{	heta})]^{-1} S(	ilde{	heta})
end{equation}

Replace hession matrix with the information matrix (i.e. ( E(H(	heta))= -Var[S(	heta)]= -I(	heta) )),
we get Fisher scoring algorithm:
egin{equation}
	heta equiv 	ilde{	heta} - [I(	ilde{	heta})]^{-1} S(	ilde{	heta})
end{equation}

item Estimate the coefficient ( eta ).
Scalar form
egin{equation}
frac{partial ell (eta)}{partial eta} =
frac{partial ell (	heta) }{ partial 	heta} frac{partial 	heta }{ partial mu }
frac{partial mu }{ partial eta } frac{partial eta }{ partial eta }
end{equation}
Some results:
egin{itemize}
item
[ frac{partial ell (	heta)}{partial 	heta} = frac{y-mu}{a(phi)} ]

item
[frac{partial	heta}{partialmu}=left(frac{partialmu}{partial	heta}
ight)^{-1}=frac{1}{V(mu)}]
item
[ frac{partial eta}{partial eta} = frac{partial X eta}{eta}]
item
[ frac{partial ell(eta)}{partial eta} =
(y-mu)left( frac{1}{V(y)} 
ight)left(frac{partial mu}{partial eta} 
ight) X ]
end{itemize}

Matrix form
egin{equation}
frac{partialell(	heta)}{partial eta} = X^{'} D^{-1} V^{-1}(y-mu)
end{equation}
where $y$ is the $n	imes1$ vector of observations, $ell(	heta)$ is the $n	imes 1$ vector of log-likelihood
values associated with observations, $V = diag[Var(y_{i})]$ is the $n 	imes n$ variance matrix of the
observations, $D=diag[partial eta_{i} / partial mu_{i}]$ is the $n 	imes n$ matrix of derivatives, and $mu$
is the $n 	imes 1$ mean vector.\
Let $W=(DVD)^{-1}$, we can get:
[ S(eta) = frac{partial ell (	heta)}{partial eta}
= X^{'} D^{-1}V^{-1}(D^{-1}D)(y-mu) = X^{'}WD(y-mu) ]
[ Var[S(eta)] =X^{'}WD[Var(y-mu)]DWX =X^{'}WDVDWX=X^{'}WX ]


item Pseudo-Likelihood for GLM \
Using Fisher scoring equation yields
$eta = 	ilde{eta} +(X^{'}	ilde{W}X)^{-1}X^{'}	ilde{W}	ilde{D}(y-	ilde{mu})$,
where $	ilde{W},	ilde{D}$, and $mu$ evaluated at $	ilde{eta}$. So GLM estimating equations:
egin{equation}
X^{'}	ilde{W}Xeta = X^{'}	ilde{W}y^{*}
end{equation}
where $y^{*} = X	ilde{eta} + 	ilde{D}(y-	ilde{mu}) = 	ilde{eta} + 	ilde{D}(y-	ilde{mu})$, and
$y^{*}$ is called the pseudo-variable.

[ E(y^{*}) =E[X	ilde{eta} + 	ilde{D}(y - 	ilde{mu})] = Xeta ]
[ Var(y^{*}) = E[X	ilde{eta} + 	ilde{D}(y - 	ilde{mu})] = 	ilde{D}	ilde{V}	ilde{D}=	ilde{W}^{-1} ]

egin{equation}
X^{'}[Var(y^{*})]^{-1}Xeta = X^{'}[Var(y^{*})]^{-1} Rightarrow X^{'}WXeta = X^{'}Wy^{*}
end{equation}

end{compactenum}
end{document}

使用emacs编辑,然后使用命令 pdfletex -glm_estimation.tex生成,生成文件在博客园的文件附件中。

下面是生成的pdf文件截图:

原文地址:https://www.cnblogs.com/xuezoushi/p/5461293.html