Java线程池与异步编排

Java创建线程的四种方式

1.继承Thread类实现多线程

public class MyThread extends Thread {
    public MyThread() {
        
    }
    public void run() {
        for(int i=0;i<10;i++) {
            System.out.println(Thread.currentThread()+":"+i);
        }
    }
    public static void main(String[] args) {
        MyThread mThread1=new MyThread();
        MyThread mThread2=new MyThread();
        MyThread myThread3=new MyThread();
        mThread1.start();
        mThread2.start();
        myThread3.start();
    }
}

2.覆写Runnable()接口实现多线程,而后同样覆写run().推荐此方式

public class MyThread implements Runnable{
    public static int count=20;
    public void run() {
        while(count>0) {
            try {
                Thread.sleep(200);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"-当前剩余票数:"+count--);
        }
    }
    public static void main(String[] args) {
        MyThread Thread1=new MyThread();
        Thread mThread1=new Thread(Thread1,"线程1");
        Thread mThread2=new Thread(Thread1,"线程2");
        Thread mThread3=new Thread(Thread1,"线程3");
        mThread1.start();
        mThread2.start();
        myThread3.start();
    }
}

继承Thread和实现Runnable接口的区别:

    a.实现Runnable接口避免多继承局限
    b.实现Runnable()可以更好的体现共享的概念

3.覆写Callable接口实现多线程JDK1.5

package com.xieh;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

/**
 * 实现Callable接口创建多线程Callable<V>接口的泛型是返回值类型
 * 
 * @author 谢辉
 *
 */
public class ThreadTest implements Callable<Integer> {

    @Override
    public Integer call() throws Exception {
        // TODO Auto-generated method stub
        System.out.println("当前线程:" + Thread.currentThread().getName());
        int i = 10 / 2;
        System.out.println("结果是:" + i);
        return i;
    }

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main--start");

        Callable<Integer> callable = new ThreadTest();
        FutureTask<Integer> futureTask = new FutureTask<Integer>(callable);

        Thread thread = new Thread(futureTask);
        thread.start();
        // 等待线程执行完,获取返回结果:注意:获取返回结果是个阻塞的操作!!
        Integer integer = futureTask.get();
        System.out.println("线程返回的结果:" + integer);

        System.out.println("main--end.");

    }

}

4.通过线程池启动多线程

通过Executor 的工具类可以创建三种类型的普通线程池:

FixThreadPool(int n); 固定大小的线程池

 使用于为了满足资源管理需求而需要限制当前线程数量的场合。使用于负载比较重的服务器。

package com.xieh;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ThreadPool {
    // 创建一个固定大小的线程池
    public static ExecutorService ex = Executors.newFixedThreadPool(5);

    public static void main(String[] args) {
        for (int i = 0; i < 2; i++) {
            Future<?> submit = ex.submit(new Runnable() {

                @Override
                public void run() {
                    for (int j = 0; j < 3; j++) {
                        System.out.println(Thread.currentThread().getName() + "---" + j);
                    }

                }
            });
        }

        ex.execute(new Runnable() {
            @Override
            public void run() {
                // TODO Auto-generated method stub
                System.out.println(Thread.currentThread().getName() + "计算结果:" + 10 / 2);

            }
        });

        ex.shutdown();

    }

}

SingleThreadPoolExecutor :单线程池

需要保证顺序执行各个任务的场景 

package com.xieh;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ThreadPool {
    public static void main(String[] args) {
        // SingleThreadPoolExecutor :单线程池
        ExecutorService ex = Executors.newSingleThreadExecutor();

        for (int i = 0; i < 2; i++) {
            Future<?> submit = ex.submit(new Runnable() {

                @Override
                public void run() {
                    for (int j = 0; j < 3; j++) {
                        System.out.println(Thread.currentThread().getName() + "---" + j);
                    }

                }
            });
        }
        ex.shutdown();
    }

}

CashedThreadPool(); 缓存线程池

当提交任务速度高于线程池中任务处理速度时,缓存线程池会不断的创建线程
 适用于提交短期的异步小程序,以及负载较轻的服务器

package com.xieh;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ThreadPool {
    public static void main(String[] args) {
        // CashedThreadPool(); 缓存线程池
        ExecutorService ex = Executors.newCachedThreadPool();

        for (int i = 0; i < 3; i++) {
            Future<?> submit = ex.submit(new Runnable() {

                @Override
                public void run() {
                    for (int j = 0; j < 3; j++) {
                        System.out.println(Thread.currentThread().getName() + "---" + j);
                    }

                }
            });
        }
        ex.shutdown();
    }

}

execute()和submit()方法

1、execute(),执行一个任务,没有返回值。
2、submit(),提交一个线程任务,有返回值。
submit(Callable<T> task)能获取到它的返回值,通过future.get()获取(阻塞直到任务执行完)。一般使用FutureTask+Callable配合使用(IntentService中有体现)。

submit(Runnable task, T result)能通过传入的载体result间接获得线程的返回值。
submit(Runnable task)则是没有返回值的,就算获取它的返回值也是null。

Future.get方法会使取结果的线程进入阻塞状态,知道线程执行完成之后,唤醒取结果的线程,然后返回结果。

线程池ThreadPoolExecutor详解

这个类的构造函数如下:

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

7大参数详解:

corePoolSize

核心线程数。在创建线程池之后,默认情况下线程池中并没有任何的线程,而是等待任务到来才创建线程去执行任务,当线程池中的线程数目达到 corePoolSize后,新来的任务将会被添加到缓存队列中,也就是那个workQueue,除非调用 ThreadPoolExecutor#prestartAllCoreThreads() 方法或者是 ThreadPoolExecutor # prestartCoreThread() 方法(从这两个方法的名字就可以看出是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或一个线程)。

PS:很多人不知道这个数该填多少合适,其实也不必特别纠结,根据实际情况填写就好,实在不知道,就按照阿里工程师的写法取下列值就好了:
int NUMBER_OF_CORES = Runtime.getRuntime().availableProcessors();

maximumPoolSize

线程池中的最大线程数。表示线程池中最多可以创建多少个线程,很多人以为它的作用是这样的:”当线程池中的任务数超过 corePoolSize 后,线程池会继续创建线程,直到线程池中的线程数小于maximumPoolSize“,其实这种理解是完全错误的。它真正的作用是:当线程池中的线程数等于 corePoolSize 并且 workQueue 已满,这时就要看当前线程数是否大于 maximumPoolSize,如果小于maximumPoolSize 定义的值,则会继续创建线程去执行任务, 否则将会调用去相应的任务拒绝策略来拒绝这个任务。另外超过 corePoolSize的线程被称做"Idle Thread", 这部分线程会有一个最大空闲存活时间(keepAliveTime),如果超过这个空闲存活时间还没有任务被分配,则会将这部分线程进行回收。

keepAliveTime

控制"idle Thread"的空闲存活时间。这个idle Thread就是上面提到的超过 corePoolSize 后新创建的那些线程,默认情况下,只有当线程池中的线程数大于corePoolSize,且这些"idle Thread"并没有被分配任务时,这个参数才会起作用。另外,如果调用了 ThreadPoolExecutor#allowCoreThreadTimeOut(boolean) 的方法,在线程池中的线程数不大于corePoolSize,且这些core Thread 也没有被分配任务时,keepAliveTime 参数也会起作用。

unit

参数keepAliveTime的时间单位,共7种取值,在TimeUtil中定义:

TimeUnit.DAYS;              //
TimeUnit.HOURS;             //小时
TimeUnit.MINUTES;           //分钟
TimeUnit.SECONDS;           //
TimeUnit.MILLISECONDS;      //毫秒
TimeUnit.MICROSECONDS;      //微妙
TimeUnit.NANOSECONDS;       //纳秒

workQueue

阻塞队列。如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到该队列当中,注意只要超过了 corePoolSize 就会把任务添加到该缓存队列,添加可能成功也可能不成功,如果成功的话就会等待空闲线程去执行该任务,若添加失败(一般是队列已满),就会根据当前线程池的状态决定如何处理该任务(若线程数 < maximumPoolSize 则新建线程;若线程数 >= maximumPoolSize,则会根据拒绝策略做具体处理)。

常用的阻塞队列有:

1)ArrayBlockingQueue       //基于数组的先进先出队列,此队列创建时必须指定大小;
2)LinkedBlockingQueue      //基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;
3)synchronousQueue        //这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。

threadFactory

线程工厂。用来为线程池创建线程,当我们不指定线程工厂时,线程池内部会调用Executors.defaultThreadFactory()创建默认的线程工厂,其后续创建的线程优先级都是Thread.NORM_PRIORITY。如果我们指定线程工厂,我们可以对产生的线程进行一定的操作。

handler

拒绝执行策略。当线程池的缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:

ThreadPoolExecutor.AbortPolicy:         // 丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:       // 也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:    // 丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:      // 由调用线程处理该任务

 

 

CompletableFuture异步编排

1、runAsync 和 supplyAsync方法

CompletableFuture 提供了四个静态方法来创建一个异步操作:

public static CompletableFuture<Void> runAsync(Runnable runnable)
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

没有指定Executor的方法会使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码。如果指定线程池,则使用指定的线程池运行。以下所有的方法都类同。

  • runAsync方法不支持返回值。
  • supplyAsync方法可以支持返回值。
runAsync方法示例:
package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");
        // 没有返回值
        CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 2;
            System.out.println("计算结果:" + i);
        }, executorService);
        // 什么都不返回,调用get方法,就变成了阻塞操作!
        // future.get();
        System.out.println("main---end");
        executorService.shutdown();
    }

}

supplyAsync方法示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        // 有返回值
        CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 2;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService);

        // 获取返回结果,调用get方法,就变成了阻塞操作!
        Integer integer = future.get();
        System.out.println("main---end:" + integer);
        executorService.shutdown();
    }

}

2、计算结果完成时的回调方法

当CompletableFuture的计算结果完成,或者抛出异常的时候,可以执行特定的Action。主要是下面的方法:

public CompletableFuture<T> whenComplete(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action)
public CompletableFuture<T> whenCompleteAsync(BiConsumer<? super T,? super Throwable> action, Executor executor)
public CompletableFuture<T> exceptionally(Function<Throwable,? extends T> fn)

可以看到Action的类型是BiConsumer<? super T,? super Throwable>它可以处理正常的计算结果,或者异常情况。

whenComplete 和 whenCompleteAsync 的区别:
whenComplete:是执行当前任务的线程执行继续执行 whenComplete 的任务。
whenCompleteAsync:是执行把 whenCompleteAsync 这个任务继续提交给线程池来进行执行。

runAsync方法计算结果完成时的后续操作示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.function.BiConsumer;
import java.util.function.Function;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        CompletableFuture<Void> future = CompletableFuture.runAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 0;
            System.out.println("计算结果:" + i);

        }, executorService);
        
        future.whenComplete(new BiConsumer<Void, Throwable>() {
            @Override
            public void accept(Void t, Throwable action) {
                System.out.println("whenComplete执行完成!" + Thread.currentThread().getName());
            }

        });
        
        future.whenCompleteAsync(new BiConsumer<Void, Throwable>() {
            @Override
            public void accept(Void t, Throwable action) {
                System.out.println("whenCompleteAsync执行完成!" + Thread.currentThread().getName());
            }

        });
        
        future.exceptionally(new Function<Throwable, Void>() {
            @Override
            public Void apply(Throwable t) {
                System.out.println("执行失败!" + t.getMessage());
                return null;
            }
        });

        // 获取返回结果,调用get方法,就变成了阻塞操作!
        // future.get();
        System.out.println("main---end:");
        executorService.shutdown();
    }

}

supplyAsync方法计算结果完成时的后续操作示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 0;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService).whenComplete((result, exception) -> {
            // 虽然能得到异常信息,但是无法修改返回数据
            System.out.println("whenComplete异步任务完成了,结果是:" + result + ";异常是:" + exception);
        }).whenCompleteAsync((result, exception) -> {
            System.out.println("whenCompleteAsync异步任务完成了,结果是:" + result + ";异常是:" + exception);
        }).exceptionally(throwable -> {
            // 如果执行失败,可以设置默认返回值
            return 10;
        });
        // 获取返回结果
        Integer integer = future.get();
        System.out.println("main---end:" + integer);
        executorService.shutdown();
    }

}

3、 handle 方法

handle 是执行任务完成时对结果的处理。
handle 方法和 thenApply 方法处理方式基本一样。不同的是 handle 是在任务完成后再执行,还可以处理异常的任务。thenApply 只可以执行正常的任务,任务出现异常则不执行 thenApply 方法。
代码示例:
package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 0;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService).whenComplete((result, exception) -> {
            // 虽然能得到异常信息,但是无法修改返回数据
            System.out.println("whenComplete异步任务完成了,结果是:" + result + ";异常是:" + exception);
        }).whenCompleteAsync((result, exception) -> {
            System.out.println("whenCompleteAsync异步任务完成了,结果是:" + result + ";异常是:" + exception);
        }).handle((result, throwable) -> {
            if (result != null) {
                return result * 2;
            }
            if (throwable != null) {
                return 1;
            }
            return 0;
            
        // 注意:handle与exceptionally都可以控制返回值,谁先被调用就以谁的为准(先被调用者的返回值为准)
        }).exceptionally(throwable -> {
            // 如果执行失败,可以设置默认返回值
            return 10;
        });
        // 获取返回结果
        Integer integer = future.get();
        System.out.println("main---end:" + integer);
        executorService.shutdown();
    }

}

4、线程串行化

thenApply 方法:当一个线程依赖另一个线程时,可以使用 thenApply 方法来把这两个线程串行化。

thenAccept 消费处理结果:接收任务的处理结果,并消费处理,无返回结果。

thenRun 方法:跟 thenAccept 方法不一样的是,不关心任务的处理结果。只要上面的任务执行完成,就开始执行 thenRun 。

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)

public CompletionStage<Void> thenAccept(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action);
public CompletionStage<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor);

public CompletionStage<Void> thenRun(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action);
public CompletionStage<Void> thenRunAsync(Runnable action,Executor executor);

 thenRun代码示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        // thenRun不能获取上一步的执行结果
        CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 2;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService).thenRunAsync(() -> {
            System.out.println("任务2启动了...");
        }, executorService);

        System.out.println("main---end:");
        executorService.shutdown();
    }

}

thenAccept代码示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        // thenAccept能获取到上一步的结果,但是无返回值
        CompletableFuture<Void> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 2;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService).thenAcceptAsync((result) -> {
            System.out.println("任务2启动了,上一步的结果是:" + result);
        }, executorService);

        System.out.println("main---end:");
        executorService.shutdown();
    }

}

thenApply代码示例:

package com.xieh;

import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

public class CompletableFutureTest {
    public static ExecutorService executorService = new ThreadPoolExecutor(5, 100, 3L, TimeUnit.SECONDS,
            new LinkedBlockingDeque<Runnable>(1000), Executors.defaultThreadFactory(),
            new ThreadPoolExecutor.AbortPolicy());

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        System.out.println("main---start");

        // thenApply能获取到上一步的结果,可以有返回值
        CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
            System.out.println("当前线程:" + Thread.currentThread().getName());
            int i = 10 / 2;
            System.out.println("计算结果:" + i);
            return i;
        }, executorService).thenApplyAsync(result -> {
            System.out.println("任务2开启了,上一步的结果是:" + result);
            return "thenApplyAsync的新结果";
        }, executorService);

        String string = future.get();
        System.out.println("main---end:" + string);
        executorService.shutdown();
    }

}

5、任务合并

thenCombine:thenCombine 会把 两个 CompletionStage 的任务都执行完成后,把两个任务的结果一块交给 thenCombine 来处理。

thenAcceptBoth:当两个CompletionStage都执行完成后,把结果一块交给thenAcceptBoth来进行消耗。

thenCompose:thenCompose 方法允许你对两个 CompletionStage 进行流水线操作,第一个操作完成时,将其结果作为参数传递给第二个操作。

applyToEither:两个CompletionStage,谁执行返回的结果快,我就用那个CompletionStage的结果进行下一步的转化操作。

acceptEither:两个CompletionStage,谁执行返回的结果快,我就用那个CompletionStage的结果进行下一步的消耗操作。

runAfterEither:两个CompletionStage,任何一个完成了都会执行下一步的操作(Runnable)。

runAfterBoth:两个CompletionStage,都完成了计算才会执行下一步的操作(Runnable)。

public <U,V> CompletionStage<V> thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn);
public <U,V> CompletionStage<V> thenCombineAsync(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn,Executor executor);

public <U> CompletionStage<Void> thenAcceptBoth(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action);
public <U> CompletionStage<Void> thenAcceptBothAsync(CompletionStage<? extends U> other,BiConsumer<? super T, ? super U> action,     Executor executor);

public <U> CompletableFuture<U> thenCompose(Function<? super T, ? extends CompletionStage<U>> fn);
public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn) ;
public <U> CompletableFuture<U> thenComposeAsync(Function<? super T, ? extends CompletionStage<U>> fn, Executor executor) ;

public <U> CompletionStage<U> applyToEither(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn);
public <U> CompletionStage<U> applyToEitherAsync(CompletionStage<? extends T> other,Function<? super T, U> fn,Executor executor);

public CompletionStage<Void> acceptEither(CompletionStage<? extends T> other,Consumer<? super T> action);
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action);
public CompletionStage<Void> acceptEitherAsync(CompletionStage<? extends T> other,Consumer<? super T> action,Executor executor);

public CompletionStage<Void> runAfterEither(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage<?> other,Runnable action,Executor executor);

public CompletionStage<Void> runAfterBoth(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action);
public CompletionStage<Void> runAfterBothAsync(CompletionStage<?> other,Runnable action,Executor executor);

thenCombine代码示例:

private static void thenCombine() throws Exception {
    CompletableFuture<String> future1 = CompletableFuture.supplyAsync(new Supplier<String>() {
        @Override
        public String get() {
            return "hello";
        }
    });
    CompletableFuture<String> future2 = CompletableFuture.supplyAsync(new Supplier<String>() {
        @Override
        public String get() {
            return "hello";
        }
    });
    CompletableFuture<String> result = future1.thenCombine(future2, new BiFunction<String, String, String>() {
        @Override
        public String apply(String t, String u) {
            return t+" "+u;
        }
    });
    System.out.println(result.get());
}

thenAcceptBoth代码示例:

private static void thenAcceptBoth() throws Exception {
    CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f1="+t);
            return t;
        }
    });
        
    CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f2="+t);
            return t;
        }
    });
    f1.thenAcceptBoth(f2, new BiConsumer<Integer, Integer>() {
        @Override
        public void accept(Integer t, Integer u) {
            System.out.println("f1="+t+";f2="+u+";");
        }
    });
}

thenCompose代码示例:

private static void thenCompose() throws Exception {
        CompletableFuture<Integer> f = CompletableFuture.supplyAsync(new Supplier<Integer>() {
            @Override
            public Integer get() {
                int t = new Random().nextInt(3);
                System.out.println("t1="+t);
                return t;
            }
        }).thenCompose(new Function<Integer, CompletionStage<Integer>>() {
            @Override
            public CompletionStage<Integer> apply(Integer param) {
                return CompletableFuture.supplyAsync(new Supplier<Integer>() {
                    @Override
                    public Integer get() {
                        int t = param *2;
                        System.out.println("t2="+t);
                        return t;
                    }
                });
            }
            
        });
        System.out.println("thenCompose result : "+f.get());
    }

applyToEither 代码示例:

private static void applyToEither() throws Exception {
    CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f1="+t);
            return t;
        }
    });
    CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f2="+t);
            return t;
        }
    });
    
    CompletableFuture<Integer> result = f1.applyToEither(f2, new Function<Integer, Integer>() {
        @Override
        public Integer apply(Integer t) {
            System.out.println(t);
            return t * 2;
        }
    });

    System.out.println(result.get());
}

acceptEither代码示例:

private static void acceptEither() throws Exception {
    CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f1="+t);
            return t;
        }
    });
        
    CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f2="+t);
            return t;
        }
    });
    f1.acceptEither(f2, new Consumer<Integer>() {
        @Override
        public void accept(Integer t) {
            System.out.println(t);
        }
    });
}

runAfterEither代码示例:

private static void runAfterEither() throws Exception {
    CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f1="+t);
            return t;
        }
    });
        
    CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f2="+t);
            return t;
        }
    });
    f1.runAfterEither(f2, new Runnable() {
        
        @Override
        public void run() {
            System.out.println("上面有一个已经完成了。");
        }
    });
}

runAfterBoth代码示例:

private static void runAfterBoth() throws Exception {
    CompletableFuture<Integer> f1 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f1="+t);
            return t;
        }
    });
        
    CompletableFuture<Integer> f2 = CompletableFuture.supplyAsync(new Supplier<Integer>() {
        @Override
        public Integer get() {
            int t = new Random().nextInt(3);
            try {
                TimeUnit.SECONDS.sleep(t);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("f2="+t);
            return t;
        }
    });
    f1.runAfterBoth(f2, new Runnable() {
        
        @Override
        public void run() {
            System.out.println("上面两个任务都执行完成了。");
        }
    });
}

参考文章:

https://www.jianshu.com/p/6bac52527ca4

https://www.liaoxuefeng.com/wiki/1252599548343744/1306581182447650

原文地址:https://www.cnblogs.com/xiejn/p/14091715.html