pytorch生成对抗示例

pytorch生成对抗示例

本文对ML(机器学习)模型的安全漏洞的认识,并将深入了解对抗性机器学习的热门话题。图像添加难以察觉的扰动会导致模型性能大不相同。通过图像分类器上的示例探讨该主题。使用第一种也是最流行的攻击方法之一,即快速梯度符号攻击算法(FGSM)来迷惑 MNIST 分类器。

1.威胁模型

对于上下文,有许多类别的对抗性攻击,每种攻击具有不同的目标和对攻击者知识的假设。总体目标是向输入数据添加最少量的扰动,引起期望的错误分类。对攻击者的知识有几种假设,其中两种是:白盒子和黑盒子。白盒攻击假定攻击者具有对模型的全部知识和访问权限,包括体系结构、输入、输出和权重。黑盒攻击,假设攻击者只能访问模型的输入和输出,并且对底层架构或权重一无所知。还有几种类型的目标,包括错误分类和源/目标错误分类。错误分类的目标,意味着攻击者只希望输出分类错误,但不关心新分类是什么。源/目标错误分类,意味着攻击者想要更改最初属于特定源类的图像,以便将其归类为特定目标类。

FGSM 攻击是一种白盒攻击,其目标是错误分类。有了这些背景信息,现在可以详细讨论攻击。

2.FGSMFast Gradient Sign Attack

快速梯度标志攻击(FGSM),是迄今为止最早和最受欢迎的对抗性攻击之一,由 Goodfellow 等人在[Explaining and Harnessing Adversarial Examples] (https://arxiv.org/abs/1412.6572)中提出,是一种简单但是有效的对抗样本生成算法。旨在通过利用模型学习的方式和渐变来攻击神经网络。想法很简单,攻击调整输入数据,以基于相同的反向传播梯度来最大化损失,而不是通过基于反向传播的梯度,调整权重来最小化损失。 换句话说,攻击是利用损失函数的梯度,然后调整输入数据以最大化损失。

在进入代码之前,先讲一下著名的 FGSM 熊猫示例并提取一些符号。

 从图中可以看出,x是正确分类为“熊猫”的原始输入图像,y是x的基本事实标签, 代表模型参数,

是用于训练网络的损失。攻击是反向将梯度传播回输入数据以计算

。 然后,在一个方向上(即

)调整输入数据(图中

的或0.007),这将使损失最大化。当目标网络仍然明显是“熊猫”时,由此产生的

扰动图像被错误地分类为“长臂猿”。

3.实现

输入参数,定义被攻击的模型,然后编写攻击代码并运行一些测试。

3.1 引入相关包

from __future__ import print_function

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

import numpy as np

import matplotlib.pyplot as plt

3.2 输入

只有三个输入,定义如下: * epsilons:用于运行的epsilon值列表。在列表中保留0非常重要,因为表示原始测试集上的模型性能。而且,期望epsilon越大,扰动就越明显,但就降低模型精度方面而言攻击越有效。由于此处的数据范围为[0,1],因此epsilon值不应超过1。 * pretrained_model:pytorch/examples/mnist训练的预训练 MNIST 模型的路径。为简单起见,下载预训练模型。 * use_cuda:如果需要使用CUDA的布尔标志。带有CUDA的GPU并不重要,使用CPU不会花费太多时间。

epsilons = [0, .05, .1, .15, .2, .25, .3]

pretrained_model = "data/lenet_mnist_model.pth"

use_cuda=True

3.2 被攻击的模型

如上所述,受攻击的模型与pytorch/examples/mnist中的 MNIST 模型相同。可以训练并保存自己的 MNIST 模型,也可以下载并使用提供的模型。此处的 Net 定义和测试数据加载器已从 MNIST 示例中复制。目的是定义模型和数据加载器,然后初始化模型并加载预训练的权重。

# 定义LeNet模型

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

        self.conv2_drop = nn.Dropout2d()

        self.fc1 = nn.Linear(320, 50)

        self.fc2 = nn.Linear(50, 10)

 

    def forward(self, x):

        x = F.relu(F.max_pool2d(self.conv1(x), 2))

        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

        x = x.view(-1, 320)

        x = F.relu(self.fc1(x))

        x = F.dropout(x, training=self.training)

        x = self.fc2(x)

        return F.log_softmax(x, dim=1)

 

#声明 MNIST 测试数据集何数据加载

test_loader = torch.utils.data.DataLoader(

    datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([

            transforms.ToTensor(),

            ])),

        batch_size=1, shuffle=True)

 

# 定义正在使用的设备

print("CUDA Available: ",torch.cuda.is_available())

device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

 

# 初始化网络

model = Net().to(device)

 

# 加载已经预训练的模型

model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))

 

# 在评估模式下设置模型。在这种情况下,这适用于Dropout图层

model.eval()

  • 输出结果:

Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ../data/MNIST/raw/train-images-idx3-ubyte.gz

Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ../data/MNIST/raw/train-labels-idx1-ubyte.gz

Extracting ../data/MNIST/raw/train-labels-idx1-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ../data/MNIST/raw/t10k-images-idx3-ubyte.gz

Extracting ../data/MNIST/raw/t10k-images-idx3-ubyte.gz

Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Extracting ../data/MNIST/raw/t10k-labels-idx1-ubyte.gz

Processing...

Done!

CUDA Available:  True

3.3 FGSM算法攻击

通过扰乱原始输入来定义创建对抗性示例的函数。fgsm_attack函数有三个输入,

是原始的勿扰乱 图像

是像素方式的扰动量

是 输入图像的损失梯度

。然后该功能将扰动图像创建为:

 

最后,为了保持数据的原始范围,将扰动的图像剪切到范围[0,1]。

# FGSM算法攻击代码

def fgsm_attack(image, epsilon, data_grad):

    # 收集数据梯度的元素符号

    sign_data_grad = data_grad.sign()

    # 通过调整输入图像的每个像素来创建扰动图像

    perturbed_image = image + epsilon*sign_data_grad

    # 添加剪切以维持[0,1]范围

    perturbed_image = torch.clamp(perturbed_image, 0, 1)

    # 返回被扰动的图像

    return perturbed_image

3.4 测试函数

本文核心结果来自测试功能。每次调用此测试函数都会对 MNIST 测试集执行完整的测试步骤,并报告最终的准确性。此函数也需要输入

。test函数展示受到强度为

的攻击下被攻击模型的准确性。对于测试集中的每个样本,该函数计算输入数据

的损失梯度,用fgsm_attack(perturbed_data) 创建扰乱图像,然后检查扰动的例子是否是对抗性的。除了测试模型的准确性之外,该函数还保存并返回一些成功的对抗性示例,以便稍后可视化。

def test( model, device, test_loader, epsilon ):

 

    # 精度计数器

    correct = 0

    adv_examples = []

 

    # 循环遍历测试集中的所有示例

    for data, target in test_loader:

 

        # 把数据和标签发送到设备

        data, target = data.to(device), target.to(device)

 

        # 设置张量的requires_grad属性,这对于攻击很关键

        data.requires_grad = True

 

        # 通过模型前向传递数据

        output = model(data)

        init_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability

 

        # 如果初始预测是错误的,不打断攻击,继续

        if init_pred.item() != target.item():

            continue

 

        # 计算损失

        loss = F.nll_loss(output, target)

 

        # 将所有现有的渐变归零

        model.zero_grad()

 

        # 计算后向传递模型的梯度

        loss.backward()

 

        # 收集datagrad

        data_grad = data.grad.data

 

        # 唤醒FGSM进行攻击

        perturbed_data = fgsm_attack(data, epsilon, data_grad)

 

        # 重新分类受扰乱的图像

        output = model(perturbed_data)

 

        # 检查是否成功

        final_pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability

        if final_pred.item() == target.item():

            correct += 1

            # 保存0 epsilon示例的特例

            if (epsilon == 0) and (len(adv_examples) < 5):

                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()

                adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )

        else:

            # 稍后保存一些用于可视化的示例

            if len(adv_examples) < 5:

                adv_ex = perturbed_data.squeeze().detach().cpu().numpy()

                adv_examples.append( (init_pred.item(), final_pred.item(), adv_ex) )

 

    # 计算这个epsilon的最终准确度

    final_acc = correct/float(len(test_loader))

    print("Epsilon: {} Test Accuracy = {} / {} = {}".format(epsilon, correct, len(test_loader), final_acc))

 

    # 返回准确性和对抗性示例

    return final_acc, adv_examples

3.5 运行攻击

实现的最后一部分是实际运行攻击。为 epsilons 输入中的每个 epsilon 值运行一个完整的测试步骤。 对于每个epsilon,保存最终的准确性,并在接下来的部分中绘制一些成功的对抗性示例。注意随着 epsilon 值的增加,打印精度会如何降低。另外,请注意ε= 0 的情况表示原始测试精度,没有攻击。

accuracies = []

examples = []

 

# 对每个epsilon运行测试

for eps in epsilons:

    acc, ex = test(model, device, test_loader, eps)

    accuracies.append(acc)

    examples.append(ex)

  • 输出结果:

Epsilon: 0      Test Accuracy = 9810 / 10000 = 0.981

Epsilon: 0.05   Test Accuracy = 9426 / 10000 = 0.9426

Epsilon: 0.1    Test Accuracy = 8510 / 10000 = 0.851

Epsilon: 0.15   Test Accuracy = 6826 / 10000 = 0.6826

Epsilon: 0.2    Test Accuracy = 4301 / 10000 = 0.4301

Epsilon: 0.25   Test Accuracy = 2082 / 10000 = 0.2082

Epsilon: 0.3    Test Accuracy = 869 / 10000 = 0.0869

4.结果

4.1 准确度 vs Epsilon

第一个结果是精度与 epsilon 图。如前所述,随着 epsilon 的增加,期望测试精度降低。这是因为较大的 epsilons 意味着,朝着最大化损失的方向迈出更大的一步。注意,即使 epsilon 值线性分布,曲线中的趋势也不是线性的。例如,ε= 0.05 时的精度仅比 ε= 0 低 约 4%,但ε= 0.2 时的精度比 ε= 0.15 低 25%。另外,请注意在 ε= 0.25 和 ε= 0.3 之间模型的准确性达到10级分类器的随机精度。

plt.figure(figsize=(5,5))

plt.plot(epsilons, accuracies, "*-")

plt.yticks(np.arange(0, 1.1, step=0.1))

plt.xticks(np.arange(0, .35, step=0.05))

plt.title("Accuracy vs Epsilon")

plt.xlabel("Epsilon")

plt.ylabel("Accuracy")

plt.show()

 

 4.2 样本对抗性示例

正如天底下没有免费午餐。在这种情况下,随着 epsilon 增加,测试精度降低,扰动也在变得更容易察觉。实际上,在攻击者必须考虑权衡,准确度降级和可感知性。展示了每个 epsilon 值的成功对抗性示例的一些例子。图的每一行显示不同的 epsilon 值。第一行是 ε= 0 的例子,代表没有扰动的原始“干净”图像。每个图像的标题显示“原始分类 - >对抗性分类。”注意,扰动在 ε= 0.15 时开始变得明显,并且在 ε= 0.3 时非常明显。然而,在所有情况下,尽管增加了噪音,人类仍然能够识别正确的类别。

# 在每个epsilon上绘制几个对抗样本的例子

cnt = 0

plt.figure(figsize=(8,10))

for i in range(len(epsilons)):

    for j in range(len(examples[i])):

        cnt += 1

        plt.subplot(len(epsilons),len(examples[0]),cnt)

        plt.xticks([], [])

        plt.yticks([], [])

        if j == 0:

            plt.ylabel("Eps: {}".format(epsilons[i]), fontsize=14)

        orig,adv,ex = examples[i][j]

        plt.title("{} -> {}".format(orig, adv))

        plt.imshow(ex, cmap="gray")

plt.tight_layout()

plt.show()

 

 5.展望

本文能够深入了解对抗机器学习。在这里有很多潜在的方向。这次攻击代表了对抗性攻击研究的开始,因为后来有很多关于如何从对手攻击和防御 ML 模型的想法。事实上,在NIPS 2017上有一场对抗性攻击和防守比赛,文章:[Adversarial Attacks and Defences Competition] (https://arxiv.org/pdf/1804.00097.pdf)描述了竞赛中使用的许多方法。防御方面的工作,让萌发了使机器学习模型,在一般情况下更加健壮的想法,包括自然扰动和对抗性的输入。

另一个方向,不同领域的对抗性攻击和防御。对抗性研究不仅限于图像领域,对语音到文本模型的攻击。 但也许了解更多关于对抗性机器学习的最好方法就是动手实践。尝试从 NIPS 2017竞赛中实施不同的攻击,并了解与 FGSM 的区别。尝试从自己的攻击中保护模。

人工智能芯片与自动驾驶
原文地址:https://www.cnblogs.com/wujianming-110117/p/14394448.html