ONNX Runtime

https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

1 定义模型

跟一般模型定义并无区别,需要torch_model.eval()或者torch_model.train(False)将模型转换为推理模型(一般dropout、batchnorm在推理和训练模式中有区别)。

2 导出模型(torch.onnx.export())

(1)export会运行模型,所以需要提供一个输入x。注意这里的x并非模型预测时的输入

(2)输入x值任意,但是大小、类型必须正确。

(3)如何不指定动态轴(dynamic_axes),模型输入x的各个维度上大小将固定,[batch_size, 1, 224, 224]中batch_size可以是变量。

# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
# torch_out = torch_model(x)  #这个是不使用onnx runtime进行模型预测推理的结果,参考比较用的

# Export the model
torch.onnx.export(torch_model,               # model being run
                  x,                         # model input (or a tuple for multiple inputs)
                  "super_resolution.onnx",   # where to save the model (can be a file or file-like object)
                  export_params=True,        # store the trained parameter weights inside the model file
                  opset_version=10,          # the ONNX version to export the model to
                  do_constant_folding=True,  # whether to execute constant folding for optimization
                  input_names = ['input'],   # the model's input names
                  output_names = ['output'], # the model's output names
                  dynamic_axes={'input' : {0 : 'batch_size'},    # variable length axes
                                'output' : {0 : 'batch_size'}})

3、加载、检测模型(onnx.load(),onnx.checker.check_model())

(1)加载模型后会生成一个onnx.ModelProto结构,其会绑定一个ML model。

import onnx

onnx_model = onnx.load("super_resolution.onnx")
onnx.checker.check_model(onnx_model)

4 运行、输入、输出模型(run())

(1)推理模型的输入为一个字典结构:{'输入名称': to_numpy(x)}

ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}

(2)为了用ONNX Runtime运行模型,需要创建一个推理session,需要输入配置参数,下面是default config。

ort_session = onnxruntime.InferenceSession("super_resolution.onnx")

(3)输出一个list,其包含了ONNX Runtime计算的模型结果。

import onnxruntime

ort_session = onnxruntime.InferenceSession("super_resolution.onnx")

def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()

# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
ort_outs = ort_session.run(None, ort_inputs)

# compare ONNX Runtime and PyTorch results
np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)

print("Exported model has been tested with ONNXRuntime, and the result looks good!")

5 一个完整的案例

模型:First, let’s create a SuperResolution model in PyTorch. This model uses the efficient sub-pixel convolution layer described in “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network” - Shi et al for increasing the resolution of an image by an upscale factor. The model expects the Y component of the YCbCr of an image as an input, and outputs the upscaled Y component in super resolution.

 

import io
import numpy as np
from torch import nn
import torch.utils.model_zoo as model_zoo
import torch.onnx
import torch.nn.init as init
from PIL import Image
import torchvision.transforms as transforms
import onnxruntime
import onnx

#前一半:导出模型
class SuperResolutionNet(nn.Module):
    def __init__(self, upscale_factor, inplace=False):
        super(SuperResolutionNet, self).__init__()

        self.relu = nn.ReLU(inplace=inplace)
        self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
        self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
        self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
        self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

        self._initialize_weights()

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.relu(self.conv3(x))
        x = self.pixel_shuffle(self.conv4(x))
        return x

    def _initialize_weights(self):
        init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
        init.orthogonal_(self.conv4.weight)


# Create the super-resolution model by using the above model definition.
torch_model = SuperResolutionNet(upscale_factor=3)

# Load pretrained model weights
model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
batch_size = 1  # just a random number

# Initialize model with the pretrained weights
map_location = lambda storage, loc: storage
if torch.cuda.is_available():
    map_location = None
torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))

# set the model to inference mode
torch_model.eval()

# Input to the model
x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
torch_out = torch_model(x)

# Export the model
torch.onnx.export(torch_model,  # model being run
                  x,  # model input (or a tuple for multiple inputs)
                  "super_resolution.onnx",  # where to save the model (can be a file or file-like object)
                  export_params=True,  # store the trained parameter weights inside the model file
                  opset_version=10,  # the ONNX version to export the model to
                  do_constant_folding=True,  # whether to execute constant folding for optimization
                  input_names=['input'],  # the model's input names
                  output_names=['output'],  # the model's output names
                  dynamic_axes={'input': {0: 'batch_size'},  # variable length axes
                                'output': {0: 'batch_size'}})

# 后一半:导入模型
onnx_model = onnx.load("super_resolution.onnx")
onnx.checker.check_model(onnx_model)

ort_session = onnxruntime.InferenceSession("super_resolution.onnx")


def to_numpy(tensor):
    return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()


img = Image.open("cat.jpg")
resize = transforms.Resize([224, 224])
img = resize(img)
img_ycbcr = img.convert('YCbCr')
img_y, img_cb, img_cr = img_ycbcr.split()
to_tensor = transforms.ToTensor()
img_y = to_tensor(img_y)
img_y.unsqueeze_(0)
# 输入
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
# 运行
ort_outs = ort_session.run(None, ort_inputs)
# 输出处理
img_out_y = ort_outs[0]
img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L')
# get the output image follow post-processing step from PyTorch implementation
# 合成输出图片
final_img = Image.merge(
    "YCbCr", [
        img_out_y,
        img_cb.resize(img_out_y.size, Image.BICUBIC),
        img_cr.resize(img_out_y.size, Image.BICUBIC),
    ]).convert("RGB")

# Save the image, we will compare this with the output image from mobile device
final_img.save("cat_superres_with_ort.jpg")
View Code

 

原文地址:https://www.cnblogs.com/wllwqdeai/p/15749372.html