三角函数求值三个类型

前言

三角函数的求值,对许多学生而言,都是个噩梦,我们不妨借助这篇博文梳理思路。

给角求值

例1求值:(cfrac{cos85^{circ}+sin25^{circ}cos30^{circ}}{cos25^{circ}})

分析:这类题目往往需要将非特殊角拆分,然后约掉含有非特殊角的代数式,就得到了最终的值。

原式=(cfrac{cos(90^{circ}-5^{circ})+cfrac{sqrt{3}}{2}sin25^{circ}}{cos25^{circ}})(=cfrac{sin5^{circ}+cfrac{sqrt{3}}{2}sin25^{circ}}{cos25^{circ}})

(=cfrac{sin(30^{circ}-25^{circ})+cfrac{sqrt{3}}{2}sin25^{circ}}{cos25^{circ}})(=cfrac{cfrac{1}{2}cos25^{circ}}{cos25^{circ}}=cfrac{1}{2})

例2求值:(cfrac{sin^250^{circ}}{1+sin10^{circ}})

分析:原式=(cfrac{1-cos100^{circ}}{2(1+sin10^{circ})})(=cfrac{1-cos(90^{circ}+10^{circ})}{2(1+sin10^{circ})})

(=cfrac{1+sin10^{circ}}{2(1+sin10^{circ})}=cfrac{1}{2})

给值求值

角度一:已知角是一个,未知角也是一个角

例3【教材习题改编】已知(sin(alpha-cfrac{pi}{3})=cfrac{15}{17})(alphain(cfrac{pi}{2},cfrac{5pi}{6})),则(sinalpha)的值为【】

分析:如果已知的角为一个,如(alpha-cfrac{pi}{3}),未知角也是一个,如(alpha),此时二者之间的关系往往利用互余、互补、半角、倍角、特殊角的角度建立联系,

比如本题目(alpha=(alpha-cfrac{pi}{3})+cfrac{pi}{3})

(sinalpha=sin[(alpha-cfrac{pi}{3})+cfrac{pi}{3}]=sin(alpha-cfrac{pi}{3})coscfrac{pi}{3}+cos(alpha-cfrac{pi}{3})sincfrac{pi}{3}=cfrac{15+8sqrt{3}}{34}).

  • 备注:简单题目只需要用到互余、互补、半角、倍角、特殊角中的某一个角度就可以求解;

例4【2017枣庄模拟】设(alpha)为锐角,(cos(alpha+cfrac{pi}{6})=cfrac{4}{5}),求(sin(2alpha+cfrac{pi}{12}))的值;

分析:注意到已知角为一个(alpha+cfrac{pi}{6}),未知角也是一个(2alpha+cfrac{pi}{12}),故二者之间的联系可能是从余、补、半、倍、特的角度建立联系,

故将已知角二倍得到(2(alpha+cfrac{pi}{6})=2alpha+cfrac{pi}{3}),发现还是和未知角不一样,故做差就发现,(2alpha+cfrac{pi}{12}=2(alpha+cfrac{pi}{6})-cfrac{pi}{4})

(sin(2alpha+cfrac{pi}{12})=sin[2(alpha+cfrac{pi}{6})-cfrac{pi}{4}]=sin[2(alpha+cfrac{pi}{6})]coscfrac{pi}{4}-cos[2(alpha+cfrac{pi}{6})]sincfrac{pi}{4})

(=2sin(alpha+cfrac{pi}{6})cos(alpha+cfrac{pi}{6})coscfrac{pi}{4}-[2cos^2(alpha+cfrac{pi}{6})-1]sincfrac{pi}{4}=cdots=cfrac{17sqrt{2}}{50}).

  • 备注:复杂一些的题目可能需要用到互余、互补、半角、倍角、特殊角中的某两个以上的角度才可以求解;

例5【2016·福建师大附中月考】若(sin(cfrac{pi}{3}-alpha)=cfrac{1}{4}),则(cos(cfrac{2pi}{3}+2alpha))=【】

$A、-cfrac{7}{8}$ $B、-cfrac{1}{4}$ $C、cfrac{1}{4}$ $D、cfrac{7}{8}$

分析:(cos(cfrac{2pi}{3}+2alpha)=cos[pi-(cfrac{pi}{3}-2alpha)])

(=-cos[2(cfrac{pi}{3}-alpha)]=-1+2sin^2(cfrac{pi}{3}-alpha))

(=-1+2 imes (cfrac{1}{4})^2=-cfrac{7}{8}),故选A。

例6【2017黑龙江哈尔滨六中模拟】已知(sin(alpha+cfrac{pi}{3})+cos(alpha-cfrac{pi}{2})=-cfrac{4sqrt{3}}{5}),则(cos(alpha+cfrac{2pi}{3}))的值为_____。

分析:先将已知条件变形为(sqrt{3}sin(alpha+cfrac{pi}{6})=-cfrac{4sqrt{3}}{5})

(sin(alpha+cfrac{pi}{6})=-cfrac{4}{5}),求(cos(alpha+cfrac{2pi}{3}))

到此题目的要求明显多了,就是个给值求值题目;

故这样变形,(cos(alpha+cfrac{2pi}{3})=cos(alpha+cfrac{pi}{6}+cfrac{pi}{2})=-sin(alpha+cfrac{pi}{6})=cfrac{4}{5})

  • 角度二:已知角为两个,未知角为一个角

例7【2016聊城模拟】若(tanalpha=-cfrac{1}{2})(tan(alpha-eta)=-cfrac{2}{5}),求(taneta)的值。

分析:如果已知的角为两个,如(alpha)(alpha-eta);未知角是一个,如(eta),此时二者之间的关系往往利用两个已知角的和差就能凑出未知角,

比如本题目(eta=alpha-(alpha-eta))

(taneta=tan[alpha-(alpha-eta)]=cfrac{tanalpha-tan(alpha-eta)}{1+tanalphacdot tan(alpha-eta)}=-cfrac{1}{12})

例8已知(sinalpha+sineta=sqrt{3}(coseta-cosalpha))(alpha,etain (0,cfrac{pi}{2})),则(sin3alpha+sin3eta=underline{0})

分析:由题目(sinalpha+sineta=sqrt{3}(coseta-cosalpha)),则(sinalpha+sqrt{3}cosalpha=sqrt{3}coseta-sineta)

(cos(alpha-cfrac{pi}{6})=cos(eta+cfrac{pi}{6}))

(alpha-cfrac{pi}{6}in(-cfrac{pi}{6},cfrac{pi}{3}))(eta+cfrac{pi}{6}in(cfrac{pi}{6},cfrac{2pi}{3}))

则有(alpha-cfrac{pi}{6}=eta+cfrac{pi}{6}),即(alpha=eta+cfrac{pi}{3})

(sin3alpha+sin3eta=sin3(eta+cfrac{pi}{3})+sin3eta)

(=sin(3eta+pi)+sin3eta=-sin3eta+sin3eta=0)

例9(alpha)(eta)都是锐角,且(cosalpha=cfrac{sqrt{5}}{5})(sin(alpha+eta)=cfrac{3}{5}),则(coseta)等于【】

$A、cfrac{2sqrt{5}}{25}$ $B、cfrac{2sqrt{5}}{5}$ $C、cfrac{2sqrt{5}}{25}或cfrac{2sqrt{5}}{5}$ $D、cfrac{2sqrt{5}}{25}或cfrac{sqrt{5}}{5}$

分析:由已知可得:(sinalpha=cfrac{2sqrt{5}}{5})(cos(alpha+eta)=pm cfrac{4}{5})

(cos(alpha+eta)=cfrac{4}{5}>cfrac{sqrt{5}}{5}=cosalpha),则有(alpha+eta<alpha)

(eta<0),这与(eta)为锐角矛盾舍去,故(cos(alpha+eta)=-cfrac{4}{5})

所以(coseta=cos[(alpha+eta)-alpha])

(=cos(alpha+eta)cosalpha+sin(alpha+eta)sinalpha)

(=cfrac{2sqrt{5}}{25}),故选(A)

例9+1已知(alpha)为第Ⅳ象限角,且(sin(alpha+cfrac{pi}{4})=cfrac{3}{5}),求(tan(alpha-cfrac{pi}{4}))的值;

法1:由题目可知,(cfrac{sqrt{2}}{2}(sinalpha+cosalpha)=cfrac{3}{5}),则(sinalpha+cosalpha=cfrac{3sqrt{2}}{5})

(sin^2alpha+cos^2alpha=1)联立,得到(2sin^2alpha-cfrac{6sqrt{2}}{5}sinalpha-cfrac{7}{25}=0),即((sqrt{2}sinalpha+cfrac{1}{5})(sqrt{2}sinalpha-cfrac{7}{5})=0)

解得(sinalpha=-cfrac{sqrt{2}}{10}),或(sinalpha=cfrac{7sqrt{2}}{10})(不符,舍去),

(sinalpha=-cfrac{sqrt{2}}{10})(cosalpha=cfrac{7sqrt{2}}{10}),从而(tanalpha=-cfrac{1}{7})

代入(tan(alpha-cfrac{pi}{4})=cfrac{tanalpha-1}{1+tanalpha}=-cfrac{4}{3})

法2:由(sinalpha+cosalpha=cfrac{3sqrt{2}}{5}),得到(2sinalpha cosalpha=-cfrac{7}{25})

则有((sinalpha-cosalpha)^2=cfrac{32}{25}),由于(alpha)为第Ⅳ象限角,

得到(sinalpha-cosalpha=-cfrac{4sqrt{2}}{5}),又(sinalpha+cosalpha=cfrac{3sqrt{2}}{5})

(sinalpha=-cfrac{sqrt{2}}{10})(cosalpha=cfrac{7sqrt{2}}{10}),从而(tanalpha=-cfrac{1}{7})

代入(tan(alpha-cfrac{pi}{4})=cfrac{tanalpha-1}{1+tanalpha}=-cfrac{4}{3})

法3:由(2sinalpha cosalpha=-cfrac{7}{25}),得到(cfrac{2sinalpha cosalpha}{sin^2alpha+cos^2alpha}=-cfrac{7}{25})

(cfrac{2tanalpha}{tan^2alpha+1}=-cfrac{7}{25}),解得(tanalpha=-7)(tanalpha=-cfrac{1}{7})

又由于又(sinalpha+cosalpha=cfrac{3sqrt{2}}{5}),则(|cosalpha|>|sinalpha|),即(|tanalpha|<1)

故保留(tanalpha=-cfrac{1}{7}),代入(tan(alpha-cfrac{pi}{4})=cfrac{tanalpha-1}{1+tanalpha}=-cfrac{4}{3})

例9+2已知(sin( heta-cfrac{pi}{4})=cfrac{2sqrt{2}}{3}),则(sin2 heta)的值为【】

$A.cfrac{7}{9}$ $B.-cfrac{7}{9}$ $C.cfrac{2}{9}$ $D.-cfrac{2}{9}$

[法1]:从数的角度分析,借助三角函数的变换求解;将已知的角看成两个角( heta)(cfrac{pi}{4})的差,

由于(sin( heta-cfrac{pi}{4})=cfrac{2sqrt{2}}{3}),即(sin hetacdot cfrac{sqrt{2}}{2}-cos hetacdot cfrac{sqrt{2}}{2}=cfrac{2sqrt{2}}{3}),

整理得到,(sin heta-cos heta=cfrac{4}{3}),两边平方得到(1-sin2 heta=cfrac{16}{9})

(sin2 heta=-cfrac{7}{9}),故选(B);

[法2]:从数的角度分析,借助三角函数的变换求解;将已知的角( heta-cfrac{pi}{4})看成一个整体角,

(sin2 heta=cos(cfrac{pi}{2}-2 heta)=cos2(cfrac{pi}{4}- heta)=cos2( heta-cfrac{pi}{4}))

(=1-2sin^2( heta-cfrac{pi}{4})=1-2cdot (cfrac{2sqrt{2}}{3})^2=-cfrac{7}{9}),故选(B);

[法3]:从形的角度分析,借助三角函数线求解;

做平面直角坐标系和单位圆,由(sin( heta-cfrac{pi}{4})=cfrac{2sqrt{2}}{3})可知,

则角( heta-cfrac{pi}{4})的终边位于射线(OA)(OB)上,其关于(y)轴对称,

将其顺时针旋转(cfrac{pi}{4}),得到角( heta)的终边位于射线(OC)(OD)上,其关于(y=-x)轴对称,

将角( heta)乘以(2)倍,则得到角(2 heta)的终边位于射线(OM)(ON)上,其关于(y)轴对称,

结合图像,如果做其正弦线,可知首先排除选项(A)(C),比较选项(B)(D)

可知应该排除(D),而选(B)

给值求角

例10定义运算:(left |egin{array}{cccc}a&b \c&dend{array} ight |=ad-bc),若(cosalpha=cfrac{1}{7})(left |egin{array}{cccc}sinalpha&sineta \cosalpha&cosetaend{array} ight |=cfrac{3sqrt{3}}{14})(0<eta<alpha<cfrac{pi}{2}),则(eta)等于【】

$A.cfrac{pi}{12}$ $B.cfrac{pi}{6}$ $C.cfrac{pi}{4}$ $D.cfrac{pi}{3}$

分析:有题目可知,(sinalpha coseta-cosalpha sineta=sin(alpha-eta)=cfrac{3sqrt{3}}{14})

(0<eta<alpha<cfrac{pi}{2}),则(0<alpha-eta<cfrac{pi}{2}),故(cos(alpha-eta)=cfrac{13}{14})

(cosalpha=cfrac{1}{7}),则(sinalpha=cfrac{4sqrt{3}}{7})

(sineta=sin[alpha-(alpha-eta)]=sinalpha cos(alpha-eta)-cosalpha sin(alpha-eta)=cfrac{4sqrt{3}}{7} imes cfrac{13}{14}-cfrac{1}{7} imes cfrac{3sqrt{3}}{14}=cfrac{sqrt{3}}{2})

又由于(0<eta<cfrac{pi}{2}),故(eta=cfrac{pi}{3})

例11【2018成都模拟,难点题目】若(sin2alpha=cfrac{sqrt{5}}{5})(sin(eta-alpha)=cfrac{sqrt{10}}{10}),且(alphain [cfrac{pi}{4},pi])(etain [pi,cfrac{3pi}{2}]),则(alpha+eta)的值是【】

$A、cfrac{7pi}{4}$ $B、cfrac{9pi}{4}$ $C、cfrac{5pi}{4}或cfrac{7pi}{4}$ $D、cfrac{5pi}{4}或cfrac{9pi}{4}$

分析:此题属于给值求角,难在角的范围的压缩。

由于(alphain [cfrac{pi}{4},pi])(2alphain [cfrac{pi}{2},2pi])

(sin2alpha=cfrac{sqrt{5}}{5}),故(2alphain [cfrac{pi}{2},pi])

(alpha in [cfrac{pi}{4},cfrac{pi}{2}])难点:角的范围的压缩

所以(cos2alpha=-cfrac{2sqrt{5}}{5})

(alpha in [cfrac{pi}{4},cfrac{pi}{2}])(etain [pi,cfrac{3pi}{2}])

(eta-alphain [cfrac{pi}{2},cfrac{5pi}{4}])

于是,(cos(eta-alpha)=-cfrac{3sqrt{10}}{10})

所以(cos(alpha+eta)=cos[2alpha+(eta-alpha)])

(=cos2alpha cos(eta-alpha)-sin2alpha sin(eta-alpha))

(=-cfrac{2sqrt{5}}{5} imes (-cfrac{3sqrt{10}}{10})-cfrac{sqrt{5}}{5} imes cfrac{sqrt{10}}{10})

(=cfrac{sqrt{2}}{2})

(alpha+etain [cfrac{5pi}{4},2pi]),故(alpha+eta=cfrac{7pi}{4}),故选(A)

解后反思:1、给值求角类题目往往先转化为给值求值,然后还需要所求角的范围。

2、求角时的函数类型的选择:

①从题目所给的值来看,所给的值是正弦和余弦,则往往函数选择(sin)(cos);所给的值是正切,则往往函数选择(tan);简单记为给弦选弦,给切选切;

②从题目所求的角来看,若角的范围是((0,pi)),则选(cos);若角的范围是((-cfrac{pi}{2},cfrac{pi}{2})),则选(sin);利用单调性这样就会一个萝卜一个坑,不担心多值的情形。

例11+1已知(alpha,etain (0,pi)),且(tan(alpha-eta)=cfrac{1}{2})(taneta=-cfrac{1}{7}),则(2alpha-eta)的值为________。

分析:由已知(alphain (0,pi))(tanalpha=tan[(alpha-eta)+eta]=cfrac{1}{3}>0),则(alphain (0,cfrac{pi}{2}))

又由于(tan2alpha=cdots=cfrac{3}{4}),则(0<2alpha<cfrac{pi}{2})

又由于(taneta=-cfrac{1}{7})(etain (0,pi)),则(cfrac{pi}{2}<eta<pi)

(tan(2alpha-eta)=cdots=1)

又由于(0<2alpha<cfrac{pi}{2})(cfrac{pi}{2}<eta<pi)

(-pi<2alpha-eta<0),故(2alpha-eta=-cfrac{3pi}{4})

例12已知(tanalpha)(taneta)是方程(x^2+3sqrt{3}x+4=0)的两个根,且(alpha)(etain (-cfrac{pi}{2},cfrac{pi}{2})),则(alpha+eta)等于【】

$A.-cfrac{2pi}{3}$ $B.-cfrac{2pi}{3}或cfrac{pi}{3}$ $C.-cfrac{pi}{3}或cfrac{2pi}{3}$ $D.cfrac{pi}{3}$

分析:由韦达定理可知,(tanalpha+taneta=-3sqrt{3})(tanalphacdot taneta=4)

结合符号法则可知,(tanalpha<0)(taneta<0),则由此可以压缩角的范围,(alpha)(etain (-cfrac{pi}{2},0))

由此知道,(alpha+etain (-pi,0)),接下来求其某一个三角函数的值,结合本题题设可知,需要求(tan(alpha+eta));

(tan(alpha+eta)=cfrac{tanalpha+taneta}{1-tanalphacdot taneta}=cfrac{-3sqrt{3}}{1-4}=sqrt{3})

结合上述范围,(alpha+etain (-pi,0)),则得到(alpha+eta=-cfrac{2pi}{3}),故选(A).

例13【使用三角函数的定义,给值求角类型】已知(eta)是钝角且(coseta=-cfrac{sqrt{5}}{5}),若点(A(1,3))是锐角(alpha)终边上的一点,则(alpha-eta)=_____.

分析:(eta)是钝角且(coseta=-cfrac{sqrt{5}}{5}=-cfrac{1}{sqrt{5}}=cfrac{x}{r}),结合三角函数的定义可知(eta)的终边上某点的坐标为((-1,2))(r=sqrt{5}),则(sineta=cfrac{2}{sqrt{5}})

锐角(alpha)终边上的一点(A(1,3)),则(r=sqrt{10})(sinalpha=cfrac{3}{sqrt{10}})(cosalpha=cfrac{1}{sqrt{10}})

由于(sin(alpha-eta)=sinalpha coseta-cosalpha sineta=cdots=-cfrac{sqrt{2}}{2})

(coseta=-cfrac{1}{sqrt{5}}>-cfrac{sqrt{2}}{2}=coscfrac{3pi}{4}),可以将范围压缩为(etain (cfrac{pi}{2},cfrac{3pi}{4}))

(sinalpha=cfrac{3}{sqrt{10}}>cfrac{sqrt{2}}{2}=sincfrac{pi}{4}),可以将范围压缩为(alphain (cfrac{pi}{4},cfrac{pi}{2}))

故由不等式性质得到(alpha-etain (-cfrac{pi}{2},0)),故(alpha-eta=-cfrac{pi}{4})

新题补充

例1【2019届高三理科数学第三轮模拟训练题】设(5sinalpha=2+4cos^2alpha),则(cos2alpha)=________。

分析:由已知条件,解方程得到(sinalpha=-2)(舍去),(sinalpha=cfrac{3}{4}),则(cos2alpha=1-2sin^2alpha=-cfrac{1}{8})

例2【2019届高三理科数学第三轮模拟训练题】已知(alpha)为第(Ⅳ)象限角,且(sin(alpha+cfrac{pi}{3})=cfrac{3}{5}),则(sin(alpha+cfrac{pi}{12}))=__________.

分析:由(alpha)为第Ⅳ象限角,且(sin(alpha+cfrac{pi}{3})=cfrac{3}{5}),则(cos(alpha+cfrac{pi}{3})=cfrac{4}{5})

(sin(alpha+cfrac{pi}{12})=sin[(alpha+cfrac{pi}{3})-cfrac{pi}{4}]=cfrac{3}{5} imes cfrac{sqrt{2}}{2}-cfrac{4}{5} imes cfrac{sqrt{2}}{2}=-cfrac{sqrt{2}}{10})

例3【2019届高三理科数学第三轮模拟训练题】已知(cos(alpha+cfrac{pi}{4})=-cfrac{5sqrt{2}}{8}),则(sin2alpha)=【】

$A.-cfrac{5}{8}$ $B.-cfrac{9}{16}$ $C.cfrac{9}{16}$ $D.cfrac{5}{8}$

分析:(sin2alpha=-cos(cfrac{pi}{2}+2alpha)=-[2cos^2(alpha+cfrac{pi}{4})^2-1]=-cfrac{9}{16}),故选(B).

例4【2020届高三文科数学训练题】已知(tan(alpha+eta)=2)(taneta=3),则(sin2alpha)=【】

$A.cfrac{7}{25}$ $B.cfrac{14}{25}$ $C.-cfrac{7}{25}$ $D.-cfrac{14}{25}$

法1:先求得(tanalpha=-cfrac{1}{7}),则(cfrac{sinalpha}{cosalpha}=cfrac{-1}{7}=cfrac{-k}{7k})((k eq 0))

(sinalpha=-k)(cosalpha=7k),则由(k^2+49k^2=1)得到(k^2=cfrac{1}{50})

(sin2alpha=2sinalphacdot cosalpha=2 imes (-k) imes 7k=-14 imes k^2=-14 imes cfrac{1}{50}=-cfrac{7}{25}),故选(C)

法2:先求得(tanalpha=-cfrac{1}{7}),由二次齐次式可得

(sin2alpha=cfrac{2sinacdot cosalpha}{sin^2alpha+cos^2alpha}=cfrac{2tanalpha}{tan^2alpha+1}=-cfrac{7}{25}),故选(C)

例5【2020届高三文科数学训练题】已知(alpha)为第二象限角,(sin(alpha+cfrac{pi}{4})=cfrac{sqrt{2}}{10}),则( ancfrac{alpha}{2})的值为【】

$A.-cfrac{1}{2}$ $B.cfrac{1}{3}$ $C.2$ $D.-3$

法1:由(sin(alpha+cfrac{pi}{4})=cfrac{sqrt{2}}{2}(sinalpha+cosalpha)=cfrac{sqrt{2}}{10}),可以得到(sinalpha+cosalpha=cfrac{1}{5})

(alpha)为第二象限角,结合勾股数(3,4,5),可知(sinalpha=cfrac{4}{5})(cosalpha=-cfrac{3}{5})

( ancfrac{alpha}{2}=cfrac{sincfrac{alpha}{2}}{coscfrac{alpha}{2}})

(=cfrac{sincfrac{alpha}{2}cdot 2cdotcoscfrac{alpha}{2}}{coscfrac{alpha}{2}cdot 2cdotcoscfrac{alpha}{2}}=cfrac{sinalpha}{1+cosalpha})

(=cfrac{frac{4}{5}}{1-frac{3}{5}}=2), 故选(C).

法2:由(sin(alpha+cfrac{pi}{4})=cfrac{sqrt{2}}{2}(sinalpha+cosalpha)=cfrac{sqrt{2}}{10}),可以得到(sinalpha+cosalpha=cfrac{1}{5})

(sinalpha+cosalpha=cfrac{sinalpha+cosalpha}{sin^2cfrac{alpha}{2}+cos^2cfrac{alpha}{2}})

(=cfrac{2cdotsincfrac{alpha}{2}cdot coscfrac{alpha}{2}+cos^2cfrac{alpha}{2}-sin^2cfrac{alpha}{2}}{sin^2cfrac{alpha}{2}+cos^2cfrac{alpha}{2}})

(=cfrac{2 ancfrac{alpha}{2}- an^2cfrac{alpha}{2}+1}{ an^2cfrac{alpha}{2}+1}=cfrac{1}{5})

解得,( ancfrac{alpha}{2}=2)( ancfrac{alpha}{2}=-cfrac{1}{3})

由于(alpha)为第二象限角,由八卦图法可知,( ancfrac{alpha}{2}>0),故( ancfrac{alpha}{2}=2),故选(C).

化简证明

1、求证:(cfrac{sin(2alpha+eta)}{sinalpha}-2cos(alpha+eta)=cfrac{sineta}{sinalpha})

2、求证:$(tanalpha+cfrac{1}{tanalpha})cdot cfrac{1}{2}sin2alpha-2cos^2alpha=-cos2alpha $

分析:切化弦,

左式(=(cfrac{sinalpha}{cosalpha}+cfrac{cosalpha}{sinalpha})cdot sinalpha cosalpha-2cos^2alpha)

(=cfrac{1}{sinalpha cosalpha}cdot sinalpha cosalpha-2cos^2alpha)(=1-2cos^2alpha)(=-cos2alpha)

原文地址:https://www.cnblogs.com/wanghai0666/p/8099112.html