格雷码生成算法

在博客中看到过一次格雷码生成算法,我在这里也想写一下。

原文中的算法为:假设已经生成了k位格雷码,那么k+1位格雷码的生成方式为(1) 按序在k位格雷码前插入一位0,生成一组编码,(2)按逆序在k位格雷码前插入一位1,生成另外一组编码,两组编码合起来就是k+1位格雷码。

如下例:

已有2位格雷码:00, 01, 11, 10,要生成3位格雷码,采用此算法:

(1)按序在各码前插入0,生成000,001, 011,010;

(2)按逆序在各码前插入1,生成110,111, 101,100;

(3)将两组编码组合起来:000, 001, 011, 010, 110, 111, 101, 100,为3位格雷码。

另外一种算法与此算法类似,不同的是插入的位是在格雷码的后面:

对于k位格雷码,在各格雷码后面分别插入0, 1 或 1, 0,生成两个编码,所有插入完成后组合起来的编码为k+1位格雷码。

如已有2位格雷码:00,01,11,10,生成3位格雷码,采用此算法:

(1)在00编码后面分别插入0,1,生成000, 001;

(2)在01编码后面分别插入1,0,生成011, 010;

(3)在11编码后面分别插入0,1,生成110, 111;

(4)在10编码后面分别插入1,0,生成101,100;

(5)将生成的编码组合起来:000, 001, 011, 010, 110, 111, 101, 100,为3位格雷码。

#include <iostream>
#include <vector>
#include <string>
#include <time.h>
 
void GrayCodeOne(int num);
void GrayCodeTwo(int num);
 
using namespace std;
 
int main()
{
    int count;
    cout << "Input Code Number:";
    cin >> count;
 
    cout << "Produce Gray Code using method 1" << endl;
    clock_t beginOne = clock();
    GrayCodeOne(count);
    clock_t endOne = clock();
    cout << "Gray Code First Method using time: " << (endOne - beginOne) << endl;
 
    cout << "Produce Gray Code using method 2" << endl;
    clock_t beginTwo = clock();
    GrayCodeTwo(count);
    clock_t endTwo = clock();
    cout << "Gray Code Second Method using time: " << (endTwo - beginTwo) << endl;
 
    return 0;
}
 
 
// Method to produce gray code using method inserting 0 in front of old gray code by positive
// and inserting 1 in front of old gray code by nagative.
void GrayCodeOne(int num)
{
    if (num < 1)
    {
        cout << "Error input Integer" << endl;
        return;
    }
 
    vector<string> codeVec;
 
    int cIdx = 1;
    for (; cIdx <= num; cIdx++)
    {
        if (codeVec.size() < 2)
        {
            codeVec.push_back("0");
            codeVec.push_back("1");
        }
        else
        {
            vector<string> tranVec;
            tranVec.resize(2 * codeVec.size());
            int tranIdx = 0;
            vector<string>::iterator codeIter = codeVec.begin();
            for (; codeIter != codeVec.end(); codeIter++)
            {
                string str = "0";
                str.append(*codeIter);
                tranVec[tranIdx++] = str;
            }
 
            vector<string>::reverse_iterator rCodeIter = codeVec.rbegin();
            for (; rCodeIter != codeVec.rend(); rCodeIter++)
            {
                string str = "1";
                str.append(*rCodeIter);
                tranVec[tranIdx++] = str; 
            }
 
            codeVec.assign(tranVec.begin(), tranVec.end());
        }
    }
 
    //vector<string>::iterator vecIter = codeVec.begin();
    //for (; vecIter != codeVec.end(); vecIter++)
    //{
    //    cout << *vecIter << endl;
    //}
 
    return;
}
 
 
// Method to produce gray code using method inserting 0/1 in the back of first gray code
// then inserting 1/0 in the back of next gray code.
void GrayCodeTwo(int num)
{
    if (num < 1)
    {
        cout << "Input error Integer" << endl;
        return;
    }
 
 
 
    vector<string> codeVec;
 
    int cIdx = 1;
    for (; cIdx <= num; cIdx++)
    {
        if (codeVec.size() < 2)
        {
            codeVec.push_back("0");
            codeVec.push_back("1");
        }
        else
        {
            vector<string> tranVec;
            int tranIdx = 0;
            int cIdx = codeVec.size();
 
            tranVec.resize(2 * cIdx);
            for (int vIdx = 0; vIdx < cIdx; vIdx++)
            {
                string str = codeVec[vIdx];
                if (0 == (vIdx % 2))
                {
                    string str0 = str;
                    str0.append("0");
                    tranVec[tranIdx++] = str0;
 
                    string str1 = str;
                    str1.append("1");
                    tranVec[tranIdx++] = str1;
                }
                else
                {
                    string str0 = str;
                    str0.append("1");
                    tranVec[tranIdx++] = str0;
 
                    string str1 = str;
                    str1.append("0");
                    tranVec[tranIdx++] = str1;
                }
            }
 
            codeVec.assign(tranVec.begin(), tranVec.end());
        }
    }
 
    //vector<string>::iterator vecIter = codeVec.begin();
    //for (; vecIter != codeVec.end(); vecIter++)
    //{
    //    cout << *vecIter << endl;
    //}
 
    return;
}

运行时间的测试:

12位格雷码,方法一和方法二所需时钟数

16位格雷码,两种方法所需时钟数

代码如下:
---------------------
作者:aitazhixin
来源:CSDN
原文:https://blog.csdn.net/aitazhixin/article/details/61915679
版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/tansuoxinweilai/p/10473535.html