poj

ACM Computer Factory
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10687   Accepted: 3986   Special Judge

Description

As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

Input

Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, where Qi specifies performance, Si,j — input specification for part jDi,k — output specification for part k.

Constraints

1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000 

Output

Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

If several solutions exist, output any of them.

Sample Input

Sample input 1
3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
Sample input 2
3 5
5   0 0 0  0 1 0
100 0 1 0  1 0 1
3   0 1 0  1 1 0
1   1 0 1  1 1 0
300 1 1 2  1 1 1
Sample input 3
2 2
100  0 0  1 0
200  0 1  1 1

Sample Output

Sample output 1
25 2
1 3 15
2 3 10
Sample output 2
4 5
1 3 3
3 5 3
1 2 1
2 4 1
4 5 1
Sample output 3
0 0

Hint

Bold texts appearing in the sample sections are informative and do not form part of the actual data.

Source

Northeastern Europe 2005, Far-Eastern Subregion
 
 
题意:第一行给你P和N, P表示配件的个数, N表示机器的数量,机器可用来组装电脑,把进来时拥有的配件变成出去时的配件。其中进入的电脑配件有三种情况:1:已配置 0:没配置 2:配置没配置都行。从机器中出去的电脑配件有两种情况:1:已配置 0:没配置,求最大效率

题解:最大流,如何建边呢?其中一个机器分两个点(i ,i + N)建边,组装前和组装后,流量和C,遍历所有机器,出去和进来的可以通的建边,流量为INF,进去的全为0的连源点,流量为INF,出来全为1的连汇点,流量为INF,跑最大流
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
#define LL long long
const int MAXN = 5e4 + 10;
const int INF = 0x3f3f3f3f;
const int mod =  1e9 + 7;
int n,m;
int sp,tp;
struct Edge{
    int u,v,next,cap;
}edge[MAXN];

int pre[MAXN]; 
int dis[MAXN],cur[MAXN];
int cnt = 0;
void init() {
    cnt = 0;
    memset(pre, -1, sizeof pre);
}
void addedge(int u,int v,int w) {
    edge[cnt].u = u;
    edge[cnt].v = v;
    edge[cnt].cap = w;
    edge[cnt].next = pre[u];
    pre[u] = cnt++;

    edge[cnt].u = v;
    edge[cnt].v = u;
    edge[cnt].cap = 0;
    edge[cnt].next = pre[v];
    pre[v] = cnt++;
}


bool bfs() {
    memset(dis, -1, sizeof dis);
    queue<int> que;
    while (!que.empty()) que.pop();
    que.push(sp);
    dis[sp] = 0;
    int u, v;
    while (!que.empty()) {
        u = que.front();
        que.pop();
        for (int i = pre[u]; i != -1; i = edge[i].next) {
            v = edge[i].v;
            if (dis[v] == -1 && edge[i].cap > 0) {
                dis[v] = dis[u] + 1;
                que.push(v);
                if (v == tp)
                    break;
            }
        }
    }
    return dis[tp] != -1;
}

int dfs(int u,int cap) {
    if (u == tp || cap == 0)
        return cap;
    int res = 0, f;
    for (int i = cur[u]; i != -1; i = edge[i].next) {
        int v = edge[i].v;
        if (dis[v] == dis[u] + 1 && (f = dfs(v, min(cap - res, edge[i].cap))) > 0) {
            edge[i].cap -= f;
            edge[i ^ 1].cap += f;
            res += f;
            if (res == cap)
                return cap;
        }
    }
    if (!res)
        dis[u] = -1;
    return res;
}


int dinic() {
    int ans = 0;
    while (bfs()) {
        for (int i = sp; i <= tp; i++)
            cur[i] = pre[i];
        ans += dfs(sp, INF);
    }
    return ans;
}


int in[55][15];
int out[55][15];
int main()
{
    while(~scanf("%d %d",&n,&m)) {
        init();
        sp = 0, tp = 2 * m + 1;
        int c;
        for (int i = 1; i <= m; i++) {
            scanf("%d", &c);
            addedge(i, i + m, c);
            int flag = 1;
            for (int j = 1; j <= n; j++) {
                scanf("%d", &in[i][j]);
                if (in[i][j] == 1)
                    flag = 0;
            }
            if (flag)
                addedge(sp, i, INF);
            flag = 1;
            for (int j = 1; j <= n; j++) {
                scanf("%d", &out[i][j]);
                if (out[i][j] == 0)
                    flag = 0;
            }
            if (flag)
                addedge(i + m, tp, INF);

            for (int j = 1; j < i; j++) {
                flag = 1;
                for (int k = 1; k <= n; k++) {
                    if (in[j][k] == 1 && out[i][k] == 0 || in[j][k] == 0 && out[i][k] == 1) {
                        flag = 0;
                        break;
                    }
                }
                if (flag)
                    addedge(i + m, j, INF);
                flag = 1;
                for (int k = 1; k <= n; k++) {
                    if (in[i][k] == 1 && out[j][k] == 0 || in[i][k] == 0 && out[j][k] == 1) {
                        flag = 0;
                        break;
                    }
                }
                if (flag)
                    addedge(j + m, i, INF);
            }
        }


        int ans = dinic();
        int sum = 0;
        for (int i = 1; i <= m; i++) {
            for (int p = pre[i + m]; p; p = edge[p].next) {
                if (edge[p].v != i && edge[p].v != sp && edge[p].v != tp && edge[p].cap != INF) {
                    sum++;
                }
            }
        }
        printf("%d %d
", ans, sum);
        for (int i = 1; i <= m; i++) {
            for (int p = pre[i + m]; p; p = edge[p].next) {
                if (edge[p].v != i && edge[p].v != sp && edge[p].v != tp && edge[p].cap != INF) {
                        printf("%d %d %d
", i, edge[p].v, INF - edge[p].cap);
                }
            }
        }

    }
    return 0;
}

/*
 3 4
15  0 0 0  0 1 0
10  0 0 0  0 1 1
30  0 1 2  1 1 1
3   0 2 1  1 1 1
 */
View Code
原文地址:https://www.cnblogs.com/smallhester/p/11241786.html