Solution -「NOI 2016」「洛谷 P1587」循环之美

(mathcal{Description})

  Link.

  给定 (n,m,k),求 (xin [1,n]capmathbb N,yin [1,m]cap mathbb N),且最简分数 (frac{x}{y})(k) 进制下是纯循环小数(包括整数)的 ((x,y)) 数量。

  (n,mle10^9)(kle2 imes10^3)

(mathcal{Solution})

  当你举几个十进制的纯循环小数就不难发现规律了。(

  考虑一个已有 (xperp y)(frac{x}y),假设它是 (k) 进制下的纯循环小数,且循环节长度为 (l)。记 ({x}) 表示 (x) 的小数部分值,那么有

[left{frac{xk^l}{y} ight}=left{frac{x}{y} ight}\Leftrightarrow~~~~frac{xk^l}{y}-leftlfloorfrac{xk^l}{y} ight floor=frac{x}{y}-leftlfloorfrac{x}{y} ight floor\Leftrightarrow~~~~xk^l-yleftlfloorfrac{xk^l}{y} ight floor=x-yleftlfloorfrac{x}{y} ight floor\Leftrightarrow~~~~xk^lequiv xpmod y\Leftrightarrow~~~~kperp y ]

所以题目就是要求

[sum_{i=1}^msum_{j=1}^n[iperp j][iperp k] ]


  略微推一下式子嘛:

[egin{aligned}sum_{i=1}^msum_{j=1}^n[iperp j][iperp k]&=sum_{i=1}^m[iperp k]sum_{j=1}^nsum_{dmid i,dmid j}mu(d)\&=sum_{d=1}^{min{n,m}}[dperp k]mu(d)sum_{i=1}^{lfloorfrac{m}{d} floor}[iperp k]lfloorfrac{n}{d} floor\&=sum_{d=1}^{min{n,m}}[dperp k]mu(d)lfloorfrac{n}{d} floorsum_{i=1}^{lfloorfrac{m}{d} floor}[iperp k]end{aligned} ]

套上整除分块,分别研究两个求和,令

[f(n)=sum_{i=1}^n[iperp k]\g(n,k)=sum_{i=1}^n[iperp k]mu(i) ]

快速解决它们,就能整除分块啦。

  先考虑 (f),显然的事实是 ([iperp k]=[(imod k)perp k]),继而有

[f(n)=lfloorfrac{n}{k} floor f(n)+f(nmod k) ]

注意到 (k) 很小,(mathcal O(k)) 预处理之后就能 (mathcal O(1))(f) 了。

  对于 (g) 而言,([iperp k]) 还能继续莫反——

[egin{aligned}g(n,k)&=sum_{i=1}^n[iperp k]mu(i)\&=sum_{i=1}^nmu(i)sum_{dmid i,dmid k}mu(k)\&=sum_{dmid k}mu(d)sum_{i=1}^{lfloorfrac{n}{d} floor}mu(id)\&=sum_{dmid k}mu(d)sum_{i=1}^{lfloorfrac{n}{d} floor}[iperp d]mu(id)~~~~*\&=sum_{dmid k}(mu(d))^2g(lfloorfrac{n}{d} floor,d)end{aligned} ]

其中,标注 (*) 的步骤同时利用 (mu) 自身和积性函数普遍的性质进行“无用”转化,巧妙地完成了递推式。直接记忆化计算上式 就可以在可观的复杂度内求出 (g) 了,特别地,当 (k=1),需要用杜教筛求 (mu) 的前缀和。

  复杂度据说是 (mathcal O(sigma_0(k)n^{frac{1}2}+n^{frac{2}3}))

(mathcal{Code})

/* Clearink */

#include <cmath>
#include <cstdio>
#include <unordered_map>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )

typedef long long LL;

const int MAXK = 2e3, MAXS = 1e7;
int n, m, K, pn, pr[MAXS + 5];
bool vis[MAXS + 5];
int f[MAXK + 5], mu[MAXS + 5], mus[MAXS + 5];

inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int gcd( const int a, const int b ) { return b ? gcd( b, a % b ) : a; }

inline LL calcF( const int n ) {
	return ( n / K ) * f[K] + f[n % K];
}

inline void sieve() {
	mu[1] = mus[1] = 1;
	rep ( i, 2, MAXS ) {
		if ( !vis[i] ) mu[pr[++pn] = i] = -1;
		for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= MAXS; ++j ) {
			vis[t] = true;
			if ( !( i % pr[j] ) ) break;
			mu[t] = -mu[i];
		}
		mus[i] = mu[i] + mus[i - 1];
	}
}

inline int calcM( const int n ) {
	static std::unordered_map<int, int> mem;

	if ( n <= MAXS ) return mus[n];
	if ( mem.count( n ) ) return mem[n];

	int ret = 1;
	for ( int l = 2, r; l <= n; l = r + 1 ) {
		r = n / ( n / l );
		ret -= ( r - l + 1 ) * calcM( n / l );
	}
	return mem[n] = ret;
}

inline LL calcS( const int n, const int k ) {
	static std::unordered_map<LL, LL> mem;

	if ( !n ) return 0;
	if ( k == 1 ) return calcM( n );
	LL h = n * 2012ll + k;
	if ( mem.count( h ) ) return mem[h];

	LL ret = 0;
	rep ( i, 1, sqrt( 1. * k ) ) if ( !( k % i ) ) {
		ret += mu[i] * mu[i] * calcS( n / i, i );
		if ( i * i != k ) {
			ret += mu[k / i] * mu[k / i] * calcS( n / ( k / i ), k / i );
		}
	}
	return mem[h] = ret;
}

int main() {
	// freopen( "cyclic.in", "r", stdin );
	// freopen( "cyclic.out", "w", stdout );

	scanf( "%d %d %d", &n, &m, &K );
	
	sieve();
	rep ( i, 1, K ) f[i] = f[i - 1] + ( gcd( i, K ) == 1 );

	LL ans = 0;
	for ( int l = 1, r, t = imin( n, m ); l <= t; l = r + 1 ) {
		r = imin( n / ( n / l ), m / ( m / l ) );
		ans += ( calcS( r, K ) - calcS( l - 1, K ) )
			* ( n / l ) * calcF( m / l );
	}

	printf( "%lld
", ans );
	return 0;
}

原文地址:https://www.cnblogs.com/rainybunny/p/14780523.html