Solution -「51nod 1355」斐波那契的最小公倍数

(mathcal{Description})

  Link.

  令 (f)( ext{Fibonacci}) 数列,给定 ({a_n}),求:

[operatorname{lcm}{f_{a_1},f_{a_2},cdots,f_{a_n}}mod(10^9+7) ]

  (nle5 imes10^4)(a_ile10^6)

(mathcal{Solution})

  你得知道:

[gcd(f_i,f_j)=f_{gcd(i,j)} ag1 ]

[operatorname{lcm}(S)=prod_{Tsubseteq Sland T ot=varnothing}gcd(T)^{(-1)^{|T|+1}} ag2 ]

  ((1)) 老经典的结论了;((2)) 本质上是一个 ( ext{Min-Max}) 反演。

  记 (F={f_{a_n}},S={a_n},m=max(S)),开始推导:

[egin{aligned} operatorname{lcm}(F)&=prod_{Tsubseteq Fland T ot=varnothing}gcd(T)^{(-1)^{|T|+1}}\ &=prod_{Tsubseteq Sland T ot=varnothing}f_{gcd(T)}^{(-1)^{|T|+1}}\ &=prod_{d=1}^mf_d^{sum_{Tsubseteq Sland T ot=varnothinglandgcd(T)=d}(-1)^{|T|+1}} end{aligned} ]

  记 (f_d) 的指数为 (g(d)),令 (h(d)=sum_{Tsubseteq Sland T ot=varnothingland d|gcd(T)}(-1)^{|T|+1}=1-sum_{Tsubseteq Sland d|gcd(T)}(-1)^{|T|})。设有 (c_d)(a_x)(d) 的倍数,那么:

[sum_{Tsubseteq Sland d|gcd(T)}(-1)^{|T|}=sum_{s=0}^{c_d}inom{c_d}s(-1)^s ]

  二项式展开逆用,后式为 ((1-1)^{c_d}=[c_d=0]),所以 (h(d)=[c_d ot=0])。最后利用 (h) 反演出 (g)

[g(d)=sum_{d|n}h(n)mu(frac{n}d) ]

  (mathcal O(nln n))(g) 求出来就好。

(mathcal{Code})

/* Clearink */

#include <cstdio>

inline int rint () {
	int x = 0; int f = 1; char s = getchar ();
	for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
	for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
	return x * f;
}

inline void wint ( int x ) {
	if ( 9 < x ) wint ( x / 10 );
	putchar ( x % 10 ^ '0' );
}

const int MAXN = 5e4, MAXA = 1e6, MOD = 1e9 + 7;
int pn, pr[MAXA + 5], mu[MAXA + 5];
int n, a[MAXN + 5], fib[MAXA + 5], indx[MAXA + 5];
bool buc[MAXA + 5], vis[MAXA + 5];

inline int qkpow ( int a, int b, const int p = MOD ) {
	int ret = 1; b = ( b % ( p - 1 ) + ( p - 1 ) ) % ( p - 1 );
	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
	return ret;
}

inline void init ( const int n ) {
	mu[1] = 1;
	for ( int i = 2; i <= n; ++ i ) {
		if ( !vis[i] ) mu[pr[++ pn] = i] = -1;
		for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= n; ++ j ) {
			vis[t] = true;
			if ( !( i % pr[j] ) ) break;
			mu[t] = -mu[i];
		}
	}
	fib[1] = 1;
	for ( int i = 1; i <= n; ++ i ) {
		if ( i > 1 ) fib[i] = ( fib[i - 1] + fib[i - 2] ) % MOD;
		for ( int j = i; j <= n; j += i ) {
			buc[i] |= buc[j];
		}
	}
	for ( int i = 1; i <= n; ++ i ) {
		for ( int j = 1, t = n / i; j <= t; ++ j ) {
			indx[i] += mu[j] * buc[i * j];
		}
	}
}

int main () {
	n = rint ();
	int mxa = 0;
	for ( int i = 1; i <= n; ++ i ) {
		buc[a[i] = rint ()] = true;
		if ( mxa < a[i] ) mxa = a[i];
	}
	init ( mxa );
	int ans = 1;
	for ( int i = 1; i <= mxa; ++ i ) {
		ans = 1ll * ans * qkpow ( fib[i], indx[i] ) % MOD;
	}
	wint ( ans ), putchar ( '
' );
	return 0;
}

(mathcal{Details})

  对 ( ext{Min-Max}) 要敏感一点呐……

原文地址:https://www.cnblogs.com/rainybunny/p/13685986.html