Solution 「CF 510E」Fox And Dinner

\(\mathcal{Description}\)

  Link.

  给定正整数集合 \(\{a_n\}\),求一种把这些数放置在任意多个圆环上的方案,使得每个环的大小大于 \(2\) 且环上相邻两数之和是素数。

  \(n\le200\)\(2\le a_i\le10^4\)

\(\mathcal{Solution}\)

  这题怎么也黑了呢 qwq……

  考虑到 \(2\le a_i\),有 \(4\le a_i+a_j\),所以素数必然是奇素数,而一个环必然是偶环。一个常见的套路是奇偶分开建对偶图,不妨设左侧奇数右侧偶数,源点 \(S\) 向所有奇数连边,容量为 \(2\)(环上与两个数相邻);奇数向与之加和为素数的偶数连边,容量为 \(1\)(环大小大于 \(2\));偶数向汇点 \(T\) 连边,容量为 \(2\)。跑最大流再根据残余网络输出方案即可。

\(\mathcal{Code}\)

#include <queue>
#include <cstdio>
#include <vector>

const int MAXN = 200, MAXV = 2e4, INF = 0x3f3f3f3f;
int n, pn, oc, ec, S, T, ecnt = 1, a[MAXN + 5], pr[MAXV + 5];
int d[MAXN + 5], head[MAXN + 5], curh[MAXN + 5], ref[MAXN + 5];
bool vis[MAXV + 5], mtc[MAXN + 5];
std::vector<int> odd, even;
std::vector<std::vector<int> > table;

struct Edge { int to, flow, nxt; } graph[MAXN * 2 + MAXN * MAXN / 2 + 5];

inline void link ( const int s, const int t, const int f ) {
	graph[++ ecnt] = { t, f, head[s] };
	head[s] = ecnt;
}

inline void addEdge ( const int s, const int t, const int f ) {
	link ( s, t, f ), link ( t, s, 0 );
}

inline void sieve ( const int n ) {
	vis[1] = true;
	for ( int i = 2; i <= n; ++ i ) {
		if ( ! vis[i] ) pr[++ pn] = i;
		for ( int j = 1; j <= pn && i * pr[j] <= n; ++ j ) {
			vis[i * pr[j]] = true;
			if ( ! ( i % pr[j] ) ) break;
		}
	}
}

inline int DFS ( const int u, int iflow ) {
	if ( u == T ) return iflow;
	int oflow = 0;
	for ( int& i = curh[u], v, of; i; i = graph[i].nxt ) {
		if ( d[v = graph[i].to] == d[u] + 1 && graph[i].flow ) {
			of = DFS ( v, std::min ( iflow, graph[i].flow ) );
			oflow += of, graph[i].flow -= of, graph[i ^ 1].flow += of;
			if ( ! ( iflow -= of ) ) break;
		}
	}
	if ( ! oflow ) d[u] = -1;
	return oflow;
}

inline bool BFS () {
	static std::queue<int> que;
	for ( int i = 1; i <= T; ++ i ) d[i] = -1;
	que.push ( S ), d[S] = 0;
	for ( int u; ! que.empty (); que.pop () ) {
		u = que.front ();
		for ( int i = head[u], v; i; i = graph[i].nxt ) {
			if ( ! ~ d[v = graph[i].to] && graph[i].flow ) {
				que.push ( v ), d[v] = d[u] + 1;
			}
		}
	}
	return ~ d[T];
}

inline int Dinic () {
	int ret = 0;
	for ( ; BFS (); ret += DFS ( S, INF ) ) {
		for ( int i = 1; i <= T; ++ i ) {
			curh[i] = head[i];
		}
	}
	return ret;
}

inline void match ( const int u, std::vector<int>& now ) {
	now.push_back ( u ), mtc[u] = true;
	for ( int i = head[u], v; i; i = graph[i].nxt ) {
		if ( ! mtc[v = graph[i].to] && v < S
		&& ( ( u <= oc && graph[i ^ 1].flow ) || ( u > oc && graph[i].flow ) ) ) {
			match ( v, now );
			break;
		}
	}
}

int main () {
	scanf ( "%d", &n );
	int mx = 0;
	for ( int i = 1; i <= n; ++ i ) {
		scanf ( "%d", &a[i] );
		if ( mx < a[i] ) mx = a[i];
		if ( a[i] & 1 ) odd.push_back ( a[i] );
		else even.push_back ( a[i] );
	}
	sieve ( mx << 1 );
	oc = odd.size (), ec = even.size ();
	S = oc + ec + 1, T = S + 1;
	for ( int i = 1, ot = 0, ct = 0; i <= n; ++ i ) {
		if ( a[i] & 1 ) ref[++ ot] = i;
		else ref[oc + ++ ct] = i;
	}
	for ( int i = 1; i <= oc; ++ i ) addEdge ( S, i, 2 );
	for ( int i = 1; i <= ec; ++ i ) addEdge ( i + oc, T, 2 );
	for ( int i = 0; i ^ oc; ++ i ) {
		for ( int j = 0; j ^ ec; ++ j ) {
			if ( ! vis[odd[i] + even[j]] ) {
				addEdge ( i + 1, oc + j + 1, 1 );
			}
		}
	}
	int f = Dinic ();
	if ( f < n ) return puts ( "Impossible" ), 0;
	std::vector<int> now;
	for ( int i = 1; i <= oc; ++ i ) {
		if ( ! mtc[i] ) {
			now.clear ();
			match ( i, now );
			table.push_back ( now );
		}
	}
	printf ( "%d\n", ( int ) table.size () );
	for ( auto ele: table ) {
		printf ( "%d", ( int ) ele.size () );
		for ( int v: ele ) printf ( " %d", ref[v] );
		putchar ( '\n' );
	}
	return 0;
}
原文地址:https://www.cnblogs.com/rainybunny/p/13413251.html