5488: 石子归并II (区间DP+环形DP+四边形不等式优化)

四边形不等式优化_石子合并问题_C++

 

  在动态规划中,经常遇到形如下式的状态转移方程:

    m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max)

  上述的m(i,j)表示区间[i,j]上的某个最优值。w(i,j)表示在转移时需要额外付出的代价。该方程的时间复杂度为O(N3)

   

  下面我们通过四边形不等式来优化上述方程,首先介绍什么是“区间包含的单调性”和“四边形不等式”

    1、区间包含的单调性:如果对于 i≤i'<j≤j',有 w(i',j)≤w(i,j'),那么说明w具有区间包含的单调性。(可以形象理解为如果小区间包含于大区间中,那么小区间的w值不超过大区间的w值)

    2、四边形不等式:如果对于 i≤i'<j≤j',有 w(i,j)+w(i',j')≤w(i',j)+w(i,j'),我们称函数w满足四边形不等式。(可以形象理解为两个交错区间的w的和不超过小区间与大区间的w的和)

  下面给出两个定理:

    1、如果上述的 w 函数同时满足区间包含单调性和四边形不等式性质,那么函数 m 也满足四边形不等式性质

       我们再定义 s(i,j) 表示 m(i,j) 取得最优值时对应的下标(即 i≤k≤j 时,k 处的 w 值最大,则 s(i,j)=k)。此时有如下定理

    2、假如 m(i,j) 满足四边形不等式,那么 s(i,j) 单调,即 s(i,j)≤s(i,j+1)≤s(i+1,j+1)。

  好了,有了上述的两个定理后,我们发现如果w函数满足区间包含单调性和四边形不等式性质,那么有 s(i,j-1)≤s(i,j)≤s(i+1,j) 。

  即原来的状态转移方程可以改写为下式:

     m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(s(i,j-1)≤k≤s(i+1,j))(min也可以改为max)

  由于这个状态转移方程枚举的是区间长度 L=j-i,而 s(i,j-1) 和 s(i+1,j) 的长度为 L-1,是之前已经计算过的,可以直接调用。

  不仅如此,区间的长度最多有n个,对于固定的长度 L,不同的状态也有 n 个,故时间复杂度为 O(N^2),而原来的时间复杂度为 O(N^3),实现了优化!

  今后只需要根据方程的形式以及 w 函数是否满足两条性质即可考虑使用四边形不等式来优化了。

  以上描述状态用 m(i,j),后文用的 dp[i][j],所代表含意是相同的,特此说明。

  以石子合并问题为例。

  例如有6堆石子,每堆石子数依次为3 4 6 5 4 2

  因为是相邻石子合并,所以不能用贪心(每次取最小的两堆合并),只能用动归。(注意:环形石子的话,必须要考虑最后一堆和第一堆的合并。)

  例如:一个合并石子的方案:

    第一次合并 3 4 6 5 4 2 ->7

    第二次合并 7 6 5 4 2 ->13

    第三次合并 13 5 4 2 ->6

    第四次合并 13 5 6 ->11

    第五次合并 13 11 ->24

  总得分=7+6+11+13+24=61 显然,比贪心法得出的合并方案(得分:62)更优。

  

  动归分析类似矩阵连乘等问题,得出递推方程:

    设 dp[i][j] 表示第 i 到第 j 堆石子合并的最优值,sum[i][j] 表示第 i 到第 j 堆石子的总数量。

    (可以在计算开始先做一遍求所有的 sum[i],表示求出所有第1堆到第i堆的总数量。则 sum[i][j]=sum[j]-sum[i]。这样计算比较快。)

  那么就有状态转移公式:

      

    这里 i<=k<j

  普通解法需要 O(n^3)。下面使用四边形不等式进行优化。

  首先判断是否符合区间单调性和四边形不等式。

     i  i'    j    j'

    3 4 6 5 4 2

  单调性:

    w[i',j] = 4+6+5=15 w[i,j'] =3+4+6+5+4+2=24

  故w[i',j] <= w[i,j'] 满足单调性

  四边形不等式:

    w[i,j] + w[i',j'] = (3+4+6+5) + (4+6+5+4+2) = 18+21 = 39

    w[i',j] + w[i,j'] = (4+6+5) + (3+4+6+5+4+2) = 15 + 24 = 39

    故 w[i,j] + w[i',j'] <= w[i',j] + w[i,j']

  故石子合并可利用四边形不等式进行优化。

  利用四边形不等式,将原递推方程的状态转移数量进行压缩(即缩小了k的取值范围)。

  令 s[i][j]=min{k | dp[i][j] = dp[i][k-1] + dp[k][j] + w[i][j]},即计算出 dp[i][j] 时的最优的 k 值(本例中寻优为取最小)

  也可以称为最优决策时的 k 值。由于决策 s 具有单调性,因此状态转移方程中的 k 的取值范围可修改为 :

    s[i,j-1] <= s[i,j] <= s[i+1,j]

    边界:s[i,i] = i

  因为 s[i,j] 的值在 m[i,j] 取得最优值时,保存和更新,因此 s[i,j-1] 和 s[i+1,j] 都在计算 dp[i][j-1] 以及 dp[i+1][j] 的时候已经计算出来了。

  因此,s[i][j] 即 k 的取值范围很容易确定。

描述

 

N堆石子摆成一个环。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。

 

例如: 1 2 3 4,有不少合并方法

1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)

1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)

1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)

 

括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。

输入

 

第1行:N(2 <= N <= 1000)
第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)

输出

 

输出最小合并代价。

样例输入

样例输出

 1 #include <bits/stdc++.h>
 2 #define ll long long
 3 using namespace std;
 4 
 5 const int maxn=2e3+5;
 6 const ll INF=0x3f3f3f3f3f3f3f3f;
 7 int arr[2*maxn];
 8 int n;
 9 ll dp[maxn][maxn],pos[maxn][maxn];
10 ll sum[maxn];
11 
12 void init(){
13     memset(dp,INF,sizeof(dp));
14     for(int i=1;i<=2*n;i++){
15         dp[i][i]=0;
16         pos[i][i]=i;
17     }
18 }
19 
20 int main(){
21     ios::sync_with_stdio(false);
22     cin>>n;
23     for(int i=1;i<=n;i++) cin>>arr[i],arr[n+i]=arr[i];
24     for(int i=1;i<=2*n;i++) sum[i]=sum[i-1]+arr[i];
25     init();
26     for(int len=1;len<=n;len++)
27     for(int i=1;i+len<=2*n;i++){
28         int j=i+len;
29         for(int k=pos[i][j-1];k<=pos[i+1][j];k++){
30             if(dp[i][j]>dp[i][k]+dp[k+1][j]){
31                 pos[i][j]=k;
32                 dp[i][j]=dp[i][k]+dp[k+1][j];
33             }
34         }
35         dp[i][j]+=sum[j]-sum[i-1];
36     }
37     ll minn=INF;
38     for(int i=1;i<=n;i++){
39         minn=min(minn,dp[i][i+n-1]);
40     }
41     cout << minn << endl;
42     return 0;
43 }
View Code
原文地址:https://www.cnblogs.com/qq-1585047819/p/11771153.html