数据挖掘实践(51):决策树cart剪枝实例

来源:https://zhuanlan.zhihu.com/p/76709712

0 简介

CART剪枝算法从"完全生长"的决策树的底端剪去一些子树,使决策树变小(模型变简单),从而能够对未知数据有更准确的预测。

分两步:

  1.从生产算法产生的整体的树 [公式] 的最底端开始不断剪枝,直至剪到整个树 [公式] 的根结点为止,从而形成了一个子树序列 [公式] ;

  2.通过交叉验证法在独立的验证数据集上对子树序列进行测试,从中选出最优子树。

1.剪枝,形成一个子树序列

剪枝剪枝,怎么来剪?

  从前面第4节将的剪枝内容来看,我们需要整一个损失函数来控制剪枝。

  这个损失函数为: [公式]

  其中,T任意子树, [公式] 为对训练数据的预测误差(如基尼指数), [公式] 为子树的叶结点个数,表示树的复杂度的。 [公式] 为参数, [公式] 为参数是 [公式] 时的子树T的整体损失。

参数 [公式] 权衡训练数据的拟合程度与模型的复杂度。

  上述关于损失函数的定义,在前面的章节中已经介绍的非常多了,看过前面的这部分就不难理解。以后的章节中,如果遇到前面详细介绍过的内容,除非必要,就都不啰嗦了。

  对固定的一个 [公式] 值,一定存在使损失函数 [公式] 最小的子树,将其表示为 [公式] 。这个 [公式] 取值越大,最优子树就偏向于简单地子树(即叶结点少), [公式] 取值越小,最优子树偏向于与训练数据集更好地拟合。我们可以想象一个极端情况,当 [公式] 时,最优子树是根结点构成的单结点树;当 [公式] 时,最优子树就是整体树本身。(这个一定要结合上面的损失函数公式来理解)。

  Breiman(CART提出者)等人证明:可以用递归的方法对树进行剪枝。什么意思呢?就是将 [公式] 从0开始逐渐增大, [公式] ,产生一系列的区间 [公式] ;对每一个 [公式] 取值,都能得到一个最优子树,最终得到对应的最优子树集 [公式] ,序列中 [公式] 是整树,一直到 [公式] (根结点构成的单结点树),是嵌套的。子树序列对应着区间 [公式] 。

 

 

 

 整个剪枝过程的示意图如上。接下来我们来看看具体数学过程是怎样的。

从整体树 [公式] 开始剪枝。对于 [公式] 的任意内部结点t(除叶结点外的所有结点,包括根结点),计算以t为单结点树的损失函数:

如下图

 然后计算以t为根结点的子树 [公式] 的损失函数:

 如下图

接下来进行 [公式] 的比较:

1) 当 [公式] ,有不等式

[公式]

意思是,此时如果保留这个子树,得到的总的损失函数是会比剪掉它更小的,所以我们选择保留子树不剪。

2) 当 [公式] 增大时,在某一 [公式] 值时有

[公式]

此时,由公式可以推出: [公式] 。 [公式] 在这时取相同的损失函数值。但由于t的结点少,因此t比 [公式] 更可取,故应对子树 [公式] 进行剪枝。

3) 当 [公式] 再增大时,1)中的不等式反向,即

[公式]

此时就应该再取下一个内部结点,进行下一步剪枝判断了。

对 [公式] 中每一内部结点t,计算:

[公式] (即对应着不同的 [公式] 取值)

  这个g(t)表示剪枝后整体损失函数减少的程度。在 [公式] 中减去g(t)值最小的子树 [公式] ,将得到的剩下的子树作为 [公式] ,同时将最小的g(t)设为 [公式] 。 [公式] 为区间 [公式] 的最优子树。

  如此剪枝下去,直至得到根结点。在这一过程中,不断地增加 [公式] 的值,得到更小的子树,产生新的区间。就得到了最优子树序列, [公式] ,剪枝后对新的叶结点t以多数表决法决定其类。

2.在剪枝得到的子树序列 [公式] 中通过交叉验证选取最优子树 [公式]

  利用独立的验证数据集,测试子树序列 [公式] 中各棵子树的平方误差或基尼指数。选择平方误差或基尼指数最小的决策树作为最优的决策树。在子树序列中,每棵子树 [公式] 都对应于一个参数 [公式] 。所以,当最优子树 [公式] 确定时,对应的 [公式] 也确定了,即得到最优决策树 [公式] 。

原文地址:https://www.cnblogs.com/qiu-hua/p/14847703.html