高等数学-求导公式与法则

求导公式与法则

求导基础公式

[(x^a)'= ax^{a-1} \ (sqrt{x})'=frac{1}{2sqrt{x}} \ (frac{1}{x})'=-frac{1}{x^2} \ (a^x)'=a^xln{a} \ (log_a{x})'=frac{1}{xln{a}} \ (sin{x})'=cos{x} \ (cos{x})'=-sin{x} \ ( an{x})'=sec^2{x} \ (cot{x})'=-csc^2{x} \ (sec{x})'=sec{x} an{x} \ (csc{x})'=-csc{x}cot{x} \ (arcsin{x})'=frac{1}{sqrt{1-x^2}} \ (arccos{x})'=-frac{1}{sqrt{1-x^2}} \ (arctan{x})'=frac{1}{1+x^2} \ (arccot{x})'=-frac{1}{1+x^2} ]


求导运算法则

设$ u(x)、v(x)$可导,则

四则求导法则 四则求微分法则
$$ (upm v)'=u'pm v'$$ $$d(upm v) = dupm dv$$
$$ (1)(uv)'=u'v+v'u (2)(ku)'=ku'(k为常数) (3)(uvw)'=u'vw+uv'w+uvw'$$ $$(1)d(uv)=udv+vdu (2)d(ku)=kdu(k为常数) (3)d(uvw)=vwdu+uwdv+uvdw$$
$$(frac{u}{v})'=frac{u'v-uv'}{v^2}$$ $$d(frac{u}{v})=frac{vdu-udv}{v^2}$$

复合函数求导法则-链式法则

(y=f(u))可导,(u=phi(x))可导,且(phi^{'}(x) eq0),则(y=f[phi(x)])可导,且$$frac{dy}{dx}=frac{dy}{du}.frac{du}{dx} = f{'}(u).phi{'}(x)= f{'}[phi(x)].phi{'}(x)$$

反函数求导法则

[(1)设y=f(x)可导且f^{'}(x) eq0,又x=phi(y)为其反函数,则x=phi(y)可导,且\ phi^{'}(y)=frac{1}{f^{'}(x)} \ 设y=f(x)二阶可导且f^{'}(x) eq0,又x=phi(y)为其反函数,则x=phi(y)二阶可导,且\ phi^{''}(y)=-frac{f^{''}(x)}{f^{'3}(x)} ]

原文地址:https://www.cnblogs.com/masterchd/p/14082162.html