关于数学分析的计算题I(积分)

不定积分与定积分

$f计算:$$int {frac{1}{{{{sin }^4}x + {{cos }^4}x}}} dx$

1

$f计算:$$int {frac{{1 + sin x}}{{1 - cos x}}} {e^{ - x}}dx$

1

$f计算:$$Ileft( {m,n} ight) = int_0^1 {{x^m}{{left( {ln x} ight)}^n}dx} $

1

$f计算:$$int_0^{2pi } {frac{{xsin x}}{{1 + {{cos }^2}x}}dx} $

1

$f计算:$$int_0^1 {frac{{ln left( {1 + x} ight)}}{{1 + {x^2}}}dx} $

1   2   3

$f计算:$

反常积分与含参积分

$f计算:$$I = int_0^{ + infty } {{e^{ - px}}frac{{sin bx - sin ax}}{x}dx} left( {p > 0,b > a} ight)$

1

$f计算:$$int_0^{ + infty } {frac{1}{{left( {1 + {x^2}} ight)left( {1 + {x^alpha }} ight)}}} dx$

1

$f计算:$$int_0^{ + infty } {frac{{1 - {e^{ - t}}}}{t}sin tdt} $

1

$f计算:$

重积分

$f计算:$设$D = left{ {left( {x,y} ight)| - 1 le x le 1,0 le y le 1} ight}$,计算$iintlimits_D {sqrt {left| {y - {x^2}} ight|} }dxdy$

1

$f计算:$设$D$由$y = x,y = 0,x = frac{pi }{2}$围成,计算$iintlimits_D {left| {cos left( {x + y} ight)} ight|dxdy}$

1

$f计算:$设$Omega $由锥面${x^2} + {y^2} = {z^2}$和$z=2$所围成,计算$iiintlimits_Omega  {sqrt {{x^2} + {y^2}} dxdydz}$

1

$f计算:$设$V$为单位球${x^2} + {y^2} + {z^2} leqslant 1$,$a,b,c$为不全为零的常数,计算$I = iiintlimits_V {cos left( {ax + by + cz} ight)dxdydz}$

$f计算:$

曲线积分

$f计算:$设$c$为${x^2} + {y^2} + {z^2} = 9$与$x + y + z = 0$的交线,计算$int_c {xyds} $

1

$f计算:$设$L$为${x^2} + {y^2} = 1$,取逆时针方向,计算$oint_L {frac{{ - ydx + xdy}}{{4{x^2} + {y^2}}}} $

1

$f计算:$

曲面积分

$f计算:$设锥面$S$为${x^2} + {y^2} = {left( {1 - z} ight)^2},0 leqslant z leqslant 1$,计算$iintlimits_S {frac{{{x^3} + {y^3} + {z^3}}}{{1 - z}}dS}$

1

$f计算:$设$S$为柱面${x^2} + {z^2} = 2azleft( {a > 0} ight)$被锥面$z = sqrt {{x^2} + {y^2}} $所截取的有限部分,计算$iintlimits_S {left( {x + z} ight)dS}$

1

$f计算:$设$S$为球面${x^2} + {y^2} + {left( {z - a} ight)^2} = {a^2}$中满足${x^2} + {y^2} leqslant ay$与$z leqslant a$那部分的下侧$(a>0)$,计算$iintlimits_S {{x^2}dydz + zdxdy}$

1

$f计算:$设$S$为抛物面${x^2} + {y^2} = z$位于$z=0,z=1$之间的部分,取外侧,计算$iintlimits_S {2xydydz - {y^2}dzdx - {x^2}dxdy}$

1

$f计算:$设$f(x,y,z)$表示从原点到椭球面$Sigma :frac{{{x^2}}}{{{a^2}}} + frac{{{y^2}}}{{{b^2}}} + frac{{{z^2}}}{{{c^2}}} = 1$上$p(x,y,z)$处的切平面的距离,计算$iintlimits_Sigma  {frac{{dS}}{{fleft( {x,y,z} ight)}}}$

1

$f计算:$设$fleft( {x,y,z} ight) = left{ {egin{array}{*{20}{c}}{1 - {x^2} - {y^2} - {z^2},{x^2} + {y^2} + {z^2} leqslant 1} \ {0{ ext{ ,}}{x^2} + {y^2} + {z^2} > 1} end{array}} ight.$,计算$Fleft( t ight) = iintlimits_{x + y + z = t} {fleft( {x,y,z} ight)dS}$

1

$f计算:$

附录

$f命题:$设$P(x,y),Q(x,y)$在$R^2$上有连续的偏导数,且对任何一个圆周$C$,有$int_C {Pleft( {x,y} ight)dx + Qleft( {x,y} ight)dy = 0} $,证明:$frac{{partial Q}}{{partial x}} = frac{{partial P}}{{partial y}}$

1

$f命题:$是$S$为球面${x^2} + {y^2} + {z^2} = 1,f$为连续函数,$a,b,c$为常数,证明$f{Poisson}公式$:[iintlimits_S {fleft( {ax + by + cz} ight)dS} = 2pi int_{ - 1}^1 {fleft( {sqrt {{a^2} + {b^2} + {c^2}} u} ight)du} ]

1

$f命题:$

 

 

 

 

                                                                                         

 

原文地址:https://www.cnblogs.com/ly142857/p/3747080.html