实反对称矩阵正则化

这是上次一个小文献笔记(https://www.cnblogs.com/luyi07/p/15442971.html)里一个定理的实践。

1. 实数反对称矩阵 \(M\)

所有矩阵元为实数,并且有反对称性 \(M^\top = - M\)

2. 反对称阵的正则形式

如果反对称矩阵 \(M\) 是块对角的,且每个对角块都是 2x2 的矩阵 \([\begin{smallmatrix} 0 & -\mu \\ \mu & 0 \end{smallmatrix}]\),则称这种形式为正则形式。

3. 二度简并实数反对称矩阵正则化

3.1 理论来源

文献笔记(https://www.cnblogs.com/luyi07/p/15442971.html)中有记录这个定理:任意反对称复数矩阵 \(M\) 都可以变换为正则形式 \(M = U F U^\top\),其中 \(U\) 是人为构造的一个幺正矩阵,\(F\) 是正则矩阵。
实数反对称矩阵是复数反对称矩阵的特例,这里我使用文献中证明过程的思想,记下二度简并实数反对称矩阵正则化计算过程、代码、效果。

3.2 计算公式

首先,拿着实数反对称阵 \(M\),构造 \(H = M^\top M\),容易证明 \(H\) 是厄米半正定的,所以可以通过实数正交相似变换,对角化为实数对角阵 \(H_d\)

\[H V^\top = V^\top H_d, ~~ V H V^\top = H_d. \]

另外构造矩阵 \(M_1 = V M V^\top\),则有

\[M_1 H_d = VMV^\top V M^\top M V^\top = V M M^\top M V^\top, \\ H_d M_1 = V M^\top M V^\top VMV^\top = V M^\top M M V^\top, \]

因为 \(M, M^\top\) 可交换,所以有 \(M_1 H_d = H_d M_1\),而 \(H_d\) 是对角阵,所以有

\[(M_1 H_d)_{ij} = (M_1)_{ij} d_j = (H_d M_1)_{ij} = d_i (M_1)_{ij}, \]

所以当 \(d_i \neq d_j\) 时,有 \((M_1)_{ij} = 0\)\(M_1\) 是分块矩阵。
\(M\) 为二度简并 即 \(H_d\) 的本征值为一些2重简并的值,那就意味着 \(M_1\) 的对角块都是 2x2,而 \(M_1\) 按定义是反对称阵,这就说明了 \(M_1\) 是正则形式。
二度简并这个假定并不特别过分,与之相对的是 3 度或者更高度的简并,想必是非常少见的。而二度简并是这个形式自带的特征,如果没有更高度的简并,就一定有二度简并。

3.3 c++代码

下面这个函数对于给定的2度简并的实数反对称矩阵 \(M\),进行正则化,得到 \(M1\),相似变换信息储存在 \(V\) 中。

// RealSkewCanonical: construct a orthogonal similar transformation, turn a given real skew matrix into canonical form
// input: n, M; output: V, M1
// H = M^\top M, H V^\top = V^\top \Lambda
// M1 = V M V^\top is a canonical matrix
void RealSkewCanonical( int n, double * M, double * V, double * M1 ){
        double * H = new double [ n*n ];
        cblas_dgemm( CblasRowMajor, CblasTrans, CblasNoTrans, n, n, n, 1, M, n, M, n, 0, H, n ); // H = M^\dagger M
        double *e = new double [n]; LapackDsyev( H, V, e, n ); // diagonalize H, get V
        double * C = new double [ n*n ];
        cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n, n, n, 1, V, n, M, n, 0, C, n ); //C = VM
        cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasTrans, n, n, n, 1, C, n, V, n, 0, M1, n ); // M1 = CV^\top = VMV^\top
        delete [] C; delete [] e; delete [] H;
}

3.4 运行结果

然后写了个主函数,进行测试,干脆一起贴在下面吧

#include<iostream>
using namespace std;
#include<cmath>
#include"mkl.h"
#include<complex>
#include<fstream>

#include"dsyev.h"

void printmtx( int n, double * A ){
        for(int i=0;i<n;i++){
                for(int j=0;j<n;j++)cout<< A[i*n+j]<<", ";
                cout<<endl;
        }
}

void readmtx( int n, double * A, string file ){
        ifstream fin(file);
        for(int i=0;i<n*n;i++) fin>>A[i];
        fin.close();
}

void randmtx( int n, double * A ){
        for(int i=0;i<n*n;i++) A[i] = ((double)rand())/RAND_MAX;
}

// RealSkewCanonical: construct a orthogonal similar transformation, turn a given real skew matrix into canonical form
// input: n, M; output: V, M1
// H = M^\top M, H V^\top = V^\top \Lambda
// M1 = V M V^\top is a canonical matrix
void RealSkewCanonical( int n, double * M, double * V, double * M1 ){
        double * H = new double [ n*n ];
        cblas_dgemm( CblasRowMajor, CblasTrans, CblasNoTrans, n, n, n, 1, M, n, M, n, 0, H, n ); // H = M^\dagger M
        double *e = new double [n]; LapackDsyev( H, V, e, n ); // diagonalize H, get V
        double * C = new double [ n*n ];
        cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, n, n, n, 1, V, n, M, n, 0, C, n ); // C = VM
        cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasTrans, n, n, n, 1, C, n, V, n, 0, M1, n ); // M1 = CV^\top = VMV^\top
        delete [] C; delete [] e; delete [] H;
}

int main(){

        int n = 4;
        double * M = new double [ n*n ];
        readmtx( n, M, "M.txt" );//M is skew-symmetric
        double * V = new double [ n*n ];
        double * M1 = new double [ n*n ];
        RealSkewCanonical( n, M, V, M1 );
        cout<<"M1:"<<endl; printmtx( n, M1 );
        delete [] M; delete [] V; delete [] M1;
        return 0;
}

再自己编个文件 M.txt:

0  1  2  5
-1 0  -9 10
-2 9  0  7
-5 -10 -7 0

运行得到结果:

M1:
5.55112e-17, 3.69536, 1.72085e-15, -2.10942e-15, 
-3.69536, -5.55112e-17, 2.33147e-15, 6.66134e-16, 
0, -2.44249e-15, 8.88178e-16, -15.6954, 
3.55271e-15, -2.22045e-16, 15.6954, -8.88178e-16, 

可以看到,变成了正则形式。

原文地址:https://www.cnblogs.com/luyi07/p/15578164.html