微积分笔记

前置例题

1.

    S1=1+2+4+8+16+···
   2S1=  2+4+8+16+···
2S1-S1=-1
    S1=-1

2.

  x=0.9999···
10x=9.9999···
 9x=9
  x=1

函数的导数和微分

函数的不定积分和定积分


知识点1 平均变化率

一般地,已知函数(y=fleft( x ight)),(x_{0},x_{1})是定义域内不同的两点,记(Delta x=x_{1}-x_{0}),(Delta y=y_{1}-y_{0}=fleft( x_{1} ight) -fleft( x_{0} ight) =fleft( x_{0}+Delta x ight) -fleft( x_{0} ight))
则当(Delta x eq 0)时,商(dfrac {Delta y}{Delta x}=dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x})称作函数(y=fleft( x ight))在区间(left[ x_{0},x_{0}+Delta x ight])(left[ x_{0}+Delta x,x_{0} ight])的平均变化率。

例1

求函数(y=x^{2})在区间(left[ x_{0},x_{0}+Delta x ight])的平均变化率。
解:(dfrac {Delta y}{Delta x}=dfrac {left( x_{0}+Delta x ight) ^{2}-x^{2}_{0}}{Delta x}=Delta x+2x_{0})

例2

求函数(y=dfrac {1}{x})在区间(left[ x_{0},x_{0}+Delta x ight])的平均变化率。
解:(dfrac {Delta y}{Delta x}=dfrac {dfrac {1}{x_{0}+Delta x}-dfrac {1}{x_{0}}}{Delta x}=-dfrac {1}{x_{0}left( x_{0}+Delta x ight) })

知识点2 瞬时变化率

如果(Delta x)趋近于0,平均变化率(dfrac {Delta y}{Delta x}=dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x})趋近于常数l,那么称常数l为函数(y=fleft( x ight))在点(x_{0})处的瞬时变化率,记作:
(Delta x ightarrow 0)时,(dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x} ightarrow l)
也记作$$lim {Delta x ightarrow 0}dfrac {fleft( x{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x}= l$$

知识点3

函数(y=fleft( x ight))在点(x_{0})处的瞬时变化率,通常称为(fleft( x ight))在点(x_{0})处的导数。
记作:(f'left( x_{0} ight))
即$$lim {Delta x ightarrow 0}dfrac {fleft( x{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x}= f'left( x_{0} ight)$$

知识点4 导数

如果(y=fleft( x ight))在开区间(left( a,b ight))内每一点都是可导的,区间(left( a,b ight))内的每一个值都对应一个确定的导数(f'left( x ight)),称区间(left( a,b ight))(f'left( x ight))可构成一个新的函数,称为(y=fleft( x ight))的导函数。
记作:(f'left( x ight)()或$ y'(或)y'x)$,通称为导数。

例3

火箭竖直向上发射,熄火时速度达到100m/,试问熄火多长时间,火箭的速度为0。
解:
(hleft( t ight) =100t-dfrac {1}{2}gt^{2})
平均变化率(平均速度):(dfrac {hleft( t+Delta t ight) -hleft( t ight) }{Delta t}=100-dfrac {1}{2}gDelta t-gt)
瞬时速度:(Delta t ightarrow 0)
(dfrac {hleft( t+Delta t ight) -hleft( t ight) }{Delta t}=100-gt)
(100-gt=0,g=9.8)
(t=dfrac {100}{g}approx10.2s)

例4

圆,面积(S=pi r^{2}),周长(l=2pi r)
解:$$S'left( x ight) =lim _{Delta r ightarrow 0}dfrac {Sleft(r+Delta r ight) -Sleft( r ight) }{Delta r}$$

[=lim _{Delta r ightarrow 0}dfrac {pi left( r-Delta r ight) ^{2}-r^{2}}{Delta r} ]

[=lim _{Delta r ightarrow 0}dfrac {2pi rDelta r+pi Delta r^{2}}{Delta r} ]

[=lim _{Delta r ightarrow 0} {(2pi r+pi Delta r)}=2pi r ]

知识点5 导数的几何意义


(Aleft( x_{0},fleft( x_{0} ight) ight) , Bleft( x_{0}+Delta x,fleft( x_{0}+Delta x ight) ight))
AB:割线(平均变化率):(dfrac {Delta y}{Delta x}=dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x})
切线(瞬时变化率):(Delta x ightarrow 0)(dfrac {Delta y}{Delta x} ightarrow k)
(B ightarrow A)(转动)
割线(AB ightarrow)切线$ AB’( 割线斜率) ightarrow$切线斜率

[fleft( x_{0} ight)=k=lim _{Delta x ightarrow 0}dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x} ]

函数在一点的切线的斜率就是函数在这点的导数:导数=斜率

例5

求抛物线(y=x^{2})在点(left( x_{0},fleft( x_{0} ight) ight))切线的斜率。

解:求导数的几何意义
知$$k=fleft( x_{0} ight)$$

[=lim _{Delta x ightarrow 0}dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x} ]

[=lim _{Delta x ightarrow 0}dfrac {left( x_{0}+Delta x ight) ^{2}-x^{2}_{0}}{Delta x} ]

[=lim _{Delta x ightarrow 0}(Delta x+2x_{0}) ]

[=2x_{0} ]

求在(0,0)处切线的斜率

[fleft( x ight)=k=0 ]

例6

求双曲线(y=dfrac {1}{x})在点
(left( 2,dfrac {1}{2} ight))的切线方程
方程(y-y_{0}=kleft( x-x_{0} ight))
(k=-dfrac {1}{x^{2}}=-dfrac {1}{4})
(y=-dfrac {1}{4}x+1)

知识点6 导数的运算

(1)常值函数的导数
(y=fleft( x ight) =c)(c为常数)

[y'=f'left( x ight) =c'=lim _{Delta x ightarrow 0}dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x} ]

[=lim _{Delta x ightarrow 0} dfrac {c-c}{Delta x}=0 ]

(2)
(y=x\ y'=x'=1)
(3)
(y=x^{2}\ y'=left( x^2 ight) '=2x)
(4)
(y=x^{3}\ y'=3x^{2})
(5)
(y=dfrac {1}{x}\ y'=-dfrac {1}{x^{2}})
(6)
(y=dfrac {1}{sqrt {x}}\ y'=dfrac {1}{2sqrt {x_{0}}})

[y'=lim _{Delta x ightarrow 0}dfrac {fleft( x_{0}+Delta x ight) -fleft( x_{0} ight) }{Delta x} ]

[=lim _{Delta x ightarrow 0}dfrac {sqrt {x_{0}+Delta x}-sqrt {x_{0}}}{Delta x} $$(分母有理化) $$=lim _{Delta x ightarrow 0}dfrac {1}{sqrt {x_{0}+Delta x}+sqrt {x_{0}}}=dfrac {1}{2sqrt {x_{0}}} ]

知识点7 导数公式表

(y=fleft( x ight) ,y'=f'left( x ight))
$ y=c,y'=0( ) y=x^{n}left( nin N+ ight) ,y'=nx^{n-1}( )y=x^{alpha }( alpha in Q,x>0), y'=alpha x^{alpha -1}( )y= a^{x}(a > 0,a eq 1),y'=a^{x}ln a( )y=log a^{x}( a >0,a eq 1),y'=dfrac {1}{xln a}( 特别地 )y=e{x},y'=e{x} y=ln x,y'=dfrac {1}{x} y=sin x,y'=cos x y=cos x,y'=-sin x( 补充: )y=ln left| x ight| ,y'=dfrac {1}{left| x ight| } y= an x,y'=sec ^{2}x=dfrac {1}{cos ^{2}x}( )y=arcsin x,y'=dfrac {1}{sqrt {1-x^{2}}} y=arccos x,y'=-dfrac {1}{sqrt {1-x^{2}}}( )y=arctan x,y'=dfrac {1}{1+x^{2}} y=arccotx,y'=-dfrac {1}{1+x^{2}}( 证明)y=arcsin x,y'=dfrac {1}{sqrt {1-x^{2}}}$:

[arcsin x= heta \ Downarrow \ sin heta =x ]

[cosDelta heta =Delta x\ heta '=dfrac {Delta heta }{Delta x}=dfrac {1}{cos heta }=dfrac {1}{sqrt {1-sin ^{2} heta }}\ Downarrow \ left( arcsin x ight) '=dfrac {1}{sqrt {1-x^{2}}} ]

极限:
(dfrac {0}{0})”$$lim _{x ightarrow 0}dfrac {sin x}{x}=1$$
"(dfrac {infty }{infty })"$$lim _{x ightarrow 0}left( 1+dfrac {1}{x} ight) ^{x}=e$$
或$$lim _{x ightarrow 0}left( 1+x ight) ^{dfrac {1}{x}}=e$$

例7

求导
(fleft( x ight) =x^{5}+2x^{4}+x^{3},gleft( x ight) =3^{x}+ln x,hleft( x ight) =cos x+sin x)
                (Downarrow)
(f'left( x ight) =5x^{4}+8x^{3}+3x^{2},g'left( x ight) =3^{x}ln 3+dfrac {1}{x}, h'left( x ight) =-sin x+cos x)

知识点8 导数的四则运算

(1)函数和(或差)的求导法则
(left[ fleft( x ight) pm gleft( x ight) ight]'=f'left( x ight) pm g'left( x ight))
(2)函数的积的求导法则
(left[ fleft( x ight) cdot gleft( x ight) ight] '=f'left( x ight) cdot gleft( x ight) +fleft( x ight) cdot g'left( x ight))
(3)导数商的求导法则
(left[ dfrac {fleft( x ight) }{gleft( x ight) } ight] ^{'}=dfrac {f'left( x ight) gleft( x ight) -fleft( x ight) g'left( x ight) }{g^{2}left( x ight) })
证明:

[left[ dfrac {fleft( x ight) }{gleft( x ight) } ight] ^{'}=lim _{Delta x ightarrow 0}dfrac {dfrac {fleft( x+Delta x ight) }{gleft( x+Delta x ight) }-dfrac {fleft( x ight) }{gleft( x ight) }}{Delta x} ]

[=lim _{Delta x ightarrow 0}dfrac {fleft( x+Delta x ight) gleft( x ight) -fleft( x ight) gleft( x+Delta x ight) }{gleft( x+Delta x ight) gleft( x ight) Delta x} ]

[=dfrac {f'left( x ight) gleft( x ight) -fleft( x ight) g'left( x ight) }{g^{2}left( x ight) } ]

例8

(fleft( x ight) =a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+ldots +a_{n-1}x+a_{n})的导数
解:
(fleft( x ight) =na_{0}x^{n-1}+(n-1)a_{1}x^{n-2}+ldots +a_{n}-1)

例9

(y=xcdot sin x)
解:
(y'=x'sin x+xcdot left( sin x ight) '\ =sin x+xcdot cos x)

例10

(y=sin 2x)
解:
(y=sin 2x=2sin xcos x\ y'=2(cos ^{2}x-sin ^{2}x )\ =2cos 2x)

例11

(y= an x=dfrac {sin x}{cos x})
解:
(y'=dfrac {left( sin x ight) 'cos x-sin xleft( cos x ight)' }{cos ^{2}x})
(=dfrac {cos ^{2}x+sin ^{2}x}{cos ^{2}x}\ =dfrac {1}{cos ^{2}x})

知识点9 利用导数判断函数的单调性

(1)如果(a,b)内(f'left( x ight) >0),函数单调递增
(2)如果(a,b)内(f'left( x ight) <0),函数单调递减

例13

y=x在(left( -infty ,+infty ight))上的单调性
解:(y'=1 >0)

例14

(y=2x^{2}-2x+4)(left( -infty ,+infty ight))上的单调性
解:(y'=2x-2)
(y' >0),即(x >1),在(left( 1,+infty ight))上函数单调递增
(y' <0),即(x <1),在(left( -infty ,1 ight))上函数单调递减

例15

(y=x^{3}-4x^{2}+x-1)
解:
(y'=3x^{2}-8x+1)
(y' >0),即在(left( -infty ,dfrac {4-sqrt {13}}{3} ight) ,left( dfrac {4+sqrt {13}}{3},+infty ight))上函数单调递增
(y' <0),即在(left( dfrac {4-sqrt {13}}{3} ,dfrac {4+sqrt {13}}{3} ight))上函数单调递减

知识点10 利用导数研究函数的性质

(y=dfrac {1}{3}x^{3}-4x+4\ y'=x^{2}-4)
(y=0)(x=pm2)

x ((-infty),-2) -2 (-2,2) 2 (2,(+infty))
(f'left( x ight)) + - +
(fleft( x ight)) ( earrow) 极大值 (searrow) 极小值 ( earrow)

知识点11 曲边梯形与定积分

例16

求曲线(y=x^{2})与直线(x=1,y=0)所围成区域的面积。
解:

[0,1]等分。
(S_{n}=0+left( dfrac {1}{n} ight) ^{2}cdot dfrac {1}{n}+left( dfrac {2}{n} ight) ^{2}cdot dfrac {1}{n}+ldots +left( dfrac {n-1}{n} ight) ^{2}cdot dfrac {1}{n}=dfrac {1}{n^{3}})
(left[ 1^{2}+2^{2}+ldots +left( n-1 ight) ^{2} ight] =dfrac {1}{n^{3}})
(dfrac {nleft( n-1)(2n-1 ight) }{6}=dfrac {1}{6}left( 1-dfrac {1}{n} ight) left( 2-dfrac {1}{n} ight))
(n ightarrow infty)

[lim _{n ightarrow infty }dfrac {1}{6}left( 1-dfrac {1}{n} ight) left( 2-dfrac {1}{n} ight)= dfrac {1}{3} ]

例12

(y=fleft( u ight) ,u=ax+b),求(dfrac {Delta y}{Delta x})
解:(u'=a)
(dfrac {Delta y}{Delta x}=dfrac {Delta y}{Delta u}cdot dfrac {Delta u}{Delta x})
(=f'left( u ight) cdot u'left( x ight))
(=acdot f'left( u ight))

eg1

(mu =x^{-1},gleft( x ight) =4x^{2}+3x)
解:
(gleft( u ight) =4u^{2}+3u\ g'left( u ight) =8u+3\ u'=-1cdot x^{-2}=-dfrac {1}{x^{2}})

eg2

(left[ sin left( 2x+dfrac {pi }{3} ight) ight]')
解:
(u=2x+dfrac {pi }{3} \y=sin u\ =cos ucdot 2\ =2cos left( 2x+dfrac {pi }{3} ight))

eg3

(left[ left( 5x+3 ight) ^{5} ight] ')
解:
(y=u,u=5x+3,u'=5)
(y'=f'left( u ight) cdot u'left( x ight) \ =5u^{4}cdot 5\ =25left( 5x+3 ight) ^{4})

知识点12 [a,b]n分

(a=x_{0} <x_{1} <x_{2} <ldots <x_{n}=b)

[Ileft( n ight) =sum ^{n-1}_{i=0}fleft( varepsilon i ight) Delta xi ]

(x_{i}=max){(Delta xi)}

[lambda _{i} ightarrow 0\ lim _{lambda i ightarrow 0}fleft( varepsilon i ight) Delta xi ightarrow l$$定积分 记作$$int ^{b}_{a}fleft( x ight) Delta x= lim _{lambda i ightarrow 0}sum ^{n-1}_{i=0}fleft( varepsilon i ight) Delta xi]

(fleft( x ight)):倍积函数

例16(续)

(S=int ^{1}_{0}x^{2}Delta x=dfrac {1}{3})

知识点13 微积分基本定理

如果(Fleft( x ight) '=fleft( x ight))(fleft( x ight))([a,b])内可积

(int ^{b}_{a}fleft( x ight) Delta x)
$ =Fleft( x ight) int ^{b}_{a}( ) =Fleft( b ight) -Fleft( a ight) $

例17

(int ^{1}_{0}x^{2}Delta x=)
解:
(ecause left( dfrac {1}{3}x^{3} ight) '=x^{2}\ herefore int ^{1}_{0}x^{2}Delta x\ =dfrac {x^{3}}{3}int ^{1}_{0}=dfrac {1}{3})

例18

(int ^{2}_{0}left( x^{2}+1 ight) Delta x\ =left( dfrac {x^{3}}{3}+x ight) int ^{2}_{0})

例19

(int ^{pi }_{0}sin Delta x\ =-cos xint ^{pi }_{0})

原文地址:https://www.cnblogs.com/liweilin/p/10629215.html