网络编程--IO模型示例

IO模型在Richard Stevens的《UNIX网络编程,第一卷》(程序猿必备!)一书中有非常详尽的描述,以下简要介绍,并给出代码示例。

另外比较好的总结性blog,推荐:
使用异步 I/O 大大提高应用程序的性能
IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

常见网络IO模型:阻塞式IO、无阻塞式IO、IO复用、异步IO、信号驱动

阻塞式IO:
在一个进程发出IO请求后,进入阻塞状态,直到内核返回数据,才重新运行,如图:

代码
sever端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
      
    int main()  
    {  
        int sockfd, new_fd;  
        int sin_size, numbytes;  
        struct sockaddr_in addr, cliaddr;  
          
        //创建socket  
        if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)  
        {  
            perror("createSocket");  
            return -1;  
        }  
          
        //初始化socket结构  
        memset(&addr, 0, sizeof(addr));  
        addr.sin_family = AF_INET;  
        addr.sin_port = htons(7092);  
        addr.sin_addr.s_addr = htonl(INADDR_ANY);  
          
        //绑定套接口  
        if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("bind");  
            return -1;  
        }  
          
        //创建监听套接口  
        if(listen(sockfd,10)==-1)  
        {  
            perror("listen");  
            return -1;  
        }  
          
          
        printf("server is running!
");  
          
        char buff[1024];  
        //等待连接  
        while(1)   
        {  
            sin_size = sizeof(struct sockaddr_in);  
              
            //接受连接  
            if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)  
            {  
                perror("accept");  
                return -1;  
            }  
              
            //生成一个子进程来完成和客户端的会话,父进程继续监听  
            if(!fork())  
            {  
                //读取客户端发来的信息  
                memset(buff,0,sizeof(buff));  
                if((numbytes = recv(new_fd,buff,sizeof(buff),0))==-1)  
                {  
                    perror("recv");  
                    return -1;  
                }  
                printf("buff=%s
",buff);  
                  
                //将从客户端接收到的信息再发回客户端  
                if(send(new_fd,buff,strlen(buff),0)==-1)  
                {  
                    perror("send");  
                }  
          
                close(new_fd);  
                return 0;  
            }  
            //父进程关闭new_fd  
            close(new_fd);  
        }  
        close(sockfd);  
    }  
client端:
    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netdb.h>  
    #include <sys/types.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
      
    int main(int argc,char *argv[])  
    {  
        if(argc!=3)  
        {  
            printf("%s: input IP & port
",argv[0]);  
            return 1;  
        }  
        int sockfd,numbytes;  
        char buf[100] = "hello world";  
        struct hostent *he;  
        struct sockaddr_in their_addr;  
          
        //将基本名字和地址转换  
        he = gethostbyname(argv[1]);  
          
        //建立一个TCP套接口  
        if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)  
        {  
            perror("socket");  
            exit(1);  
        }  
          
        //初始化结构体  
        their_addr.sin_family = AF_INET;  
        their_addr.sin_port = htons(atoi(argv[2]));  
        their_addr.sin_addr = *((struct in_addr *)he->h_addr);  
        bzero(&(their_addr.sin_zero),8);  
          
        //和服务器建立连接  
        if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("connect");  
            exit(1);  
        }  
          
        //向服务器发送字符串  
        if(send(sockfd,buf,strlen(buf),0)==-1)  
        {  
            perror("send");  
            exit(1);  
        }  
        memset(buf,0,sizeof(buf));  
          
        //接受从服务器返回的信息  
        if((numbytes = recv(sockfd,buf,100,0))==-1)  
        {  
            perror("recv");  
            exit(1);  
        }  
          
        close(sockfd);  
        return 0;  
    }  

 
运行:
$ ./bin/server
server is running!
buff=hello world
buff=hello world

$ ./bin/client 10.32.49.10 7092
$ ./bin/client 10.32.49.10 7092

无阻塞式IO:
在一个进程发出IO请求后,不阻塞,如果数据没有准备好,就直接返回错误码,如图:


可以通过fcntl控制socket描述符属性。
int flags;
flag=fcntl(sockfd,F_GETFL,0);
fcntl(sockfd,F_SETFL,flag|O_NONBLOCK)

非阻塞式I/O模型对4种I/O操作返回的错误
读操作:接收缓冲区无数据时返回EWOULDBLOCK
写操作:发送缓冲区无空间时返回EWOULDBLOCK;空间不够时部分拷贝,返回实际拷贝字节数
建立连接:启动3次握手,立刻返回错误EINPROGRESS;服务器客户端在同一主机上connect立即返回成功
接受连接:没有新连接返回EWOULDBLOCK

代码:
server端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
    #include <fcntl.h>  
      
    int main()  
    {  
        int sockfd, new_fd;  
        int sin_size;  
        struct sockaddr_in addr, cliaddr;  
          
        //创建socket  
        if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)  
        {  
            perror("createSocket");  
            return -1;  
        }  
          
        //初始化socket结构  
        memset(&addr, 0, sizeof(addr));  
        addr.sin_family = AF_INET;  
        addr.sin_port = htons(7092);  
        addr.sin_addr.s_addr = htonl(INADDR_ANY);  
          
        //绑定套接口  
        if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("bind");  
            return -1;  
        }  
          
        //创建监听套接口  
        if(listen(sockfd,10)==-1)  
        {  
            perror("listen");  
            return -1;  
        }  
          
        printf("server is running!
");  
          
        char buff[1024];  
        //等待连接  
        while(1)   
        {  
            sin_size = sizeof(struct sockaddr_in);  
              
            //接受连接  
            if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)  
            {  
                perror("accept");  
                return -1;  
            }  
                  
            //生成一个子进程来完成和客户端的会话,父进程继续监听  
            if(!fork())  
            {  
                //设置new_fd无阻塞属性  
                int flags;  
                if((flags=fcntl(new_fd, F_GETFL, 0))<0)    
                {  
                    perror("fcntl F_GETFL");    
                }  
                flags |= O_NONBLOCK;    
                if(fcntl(new_fd, F_SETFL,flags)<0)    
                {  
                    perror("fcntl F_SETFL");    
                }  
                  
                //读取客户端发来的信息  
                memset(buff,0,sizeof(buff));  
                while(1)  
                {  
                    if((recv(new_fd,buff,sizeof(buff),0)) < 0)  
                    {  
                        if(errno==EWOULDBLOCK)  
                        {  
                            perror("recv error, wait....");  
                            sleep(1);  
                            continue;  
                        }  
                    }  
                    else  
                    {  
                        printf("buff=%s
",buff);  
                    }     
                    break;  
                }  
      
                //发送数据  
                while(1)  
                {  
                    if(send(new_fd,buff,strlen(buff),0) < 0)  
                    {  
                        if(errno==EWOULDBLOCK)  
                        {  
                            perror("send error, wait....");  
                            sleep(1);  
                            continue;  
                        }  
                    }  
                    else  
                    {  
                        printf("buff=%s
",buff);  
                    }     
                    break;  
                }  
          
                close(new_fd);  
                return 0;  
            }  
            //父进程关闭new_fd  
            close(new_fd);  
        }  
        close(sockfd);  
    }  

client端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netdb.h>  
    #include <sys/types.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
      
    int main(int argc,char *argv[])  
    {  
        if(argc!=3)  
        {  
            printf("%s: input IP & port
",argv[0]);  
            return 1;  
        }  
        int sockfd,numbytes;  
        char buf[100] = "hello world";  
        struct hostent *he;  
        struct sockaddr_in their_addr;  
          
        //将基本名字和地址转换  
        he = gethostbyname(argv[1]);  
          
        //建立一个TCP套接口  
        if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)  
        {  
            perror("socket");  
            exit(1);  
        }  
          
        //初始化结构体  
        their_addr.sin_family = AF_INET;  
        their_addr.sin_port = htons(atoi(argv[2]));  
        their_addr.sin_addr = *((struct in_addr *)he->h_addr);  
        bzero(&(their_addr.sin_zero),8);  
          
        //和服务器建立连接  
        if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("connect");  
            exit(1);  
        }  
      
        sleep(5);  
          
        //向服务器发送字符串  
        if(send(sockfd,buf,strlen(buf),0)==-1)  
        {  
            perror("send");  
            exit(1);  
        }  
        memset(buf,0,sizeof(buf));  
          
          
        sleep(5);  
          
        //接受从服务器返回的信息  
        if((numbytes = recv(sockfd,buf,100,0))==-1)  
        {  
            perror("recv");  
            exit(1);  
        }  
          
        close(sockfd);  
        return 0;  
    }  

 
运行:
$ ./bin/server
server is running!
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
recv error, wait....: Resource temporarily unavailable
buff=hello world
buff=hello world

$ ./bin/client 10.32.49.10 7092

IO复用:
IO复用阻塞在select、poll或epoll这样的系统调用上,通过这种方式,在不使用多线程的前提下,单个进程可以同时处理多个网络连接的IO。如图:


代码
sever端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
    #include <fcntl.h>  
    #include <netdb.h>  
    #include <sys/epoll.h>  
      
    #define MAXEVENT 1024  
      
    int create_server_socket(int& sockfd)  
    {  
        struct sockaddr_in addr;  
          
        //创建socket  
        if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)  
        {  
            perror("createSocket");  
            return -1;  
        }  
          
        //初始化socket结构  
        memset(&addr, 0, sizeof(addr));  
        addr.sin_family = AF_INET;  
        addr.sin_port = htons(7092);  
        addr.sin_addr.s_addr = htonl(INADDR_ANY);  
          
        //绑定套接口  
        if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("bind");  
            return -1;  
        }  
          
        //创建监听套接口  
        if(listen(sockfd,10)==-1)  
        {  
            perror("listen");  
            return -1;  
        }  
          
        return 0;     
    }  
      
    int set_socket_non_blocking(int fd)  
    {  
        int flags, s;  
          
        flags = fcntl (fd, F_GETFL, 0);  
        if (flags == -1)  
        {  
            perror ("fcntl F_GETFL failed");  
            return -1;  
        }  
          
        flags |= O_NONBLOCK;  
        s = fcntl (fd, F_SETFL, flags);  
        if (s == -1)  
        {  
            perror ("fcntl F_SETFL failed");  
            return -1;  
        }  
          
        return 0;  
    }  
      
    int main()  
    {  
        int sockfd, efd;  
        struct epoll_event event;  
        struct epoll_event *events;   
        int s;  
          
        if(create_server_socket(sockfd) != 0)  
        {  
            perror("create server sock failed
");  
            return 1;  
        }  
        set_socket_non_blocking(sockfd);  
          
        printf("server is running!
");  
      
        //创建一个epoll的句柄  
        //int epoll_create(int size)    
        //Since Linux 2.6.8, the size argument is unused. (The kernel dynamically sizes the required data structures without needing this initial hint.)  
        efd = epoll_create(MAXEVENT);  
        if (efd == -1)  
        {  
            perror ("epoll_create");  
            abort ();  
        }  
      
        //注册新事件到epoll efd  
        event.data.fd = sockfd;  
        event.events = EPOLLIN | EPOLLET;  
        s = epoll_ctl(efd, EPOLL_CTL_ADD, sockfd, &event);  
        if (s == -1)  
        {  
            perror ("epoll_ctl EPOLL_CTL_ADD failed");  
            abort ();  
        }  
          
        events = (epoll_event*)calloc(MAXEVENT, sizeof(event));  
          
        while (1)  
        {  
            int n, i;  
            n = epoll_wait(efd, events, MAXEVENT, -1);  
            for (i = 0; i < n; i++)  
            {  
                //fd error  
                if ((events[i].events & EPOLLERR) ||  
                    (events[i].events & EPOLLHUP) ||  
                  (!(events[i].events & EPOLLIN)))  
                {  
                    perror("epoll error
");  
                    close (events[i].data.fd);  
                    continue;  
                }  
                //新连接  
                else if (sockfd == events[i].data.fd)  
                {  
                    while (1)  
                    {  
                        struct sockaddr in_addr;  
                        socklen_t in_len;  
                        int infd;  
                        char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];  
                          
                        //接受连接  
                        in_len = sizeof(in_addr);  
                        infd = accept(sockfd, &in_addr, &in_len);  
                        if (infd == -1)  
                        {  
                            if ((errno == EAGAIN) ||  
                              (errno == EWOULDBLOCK))  
                            {  
                                //已接受所有连接  
                                break;  
                            }  
                            else  
                            {  
                                perror ("accept");  
                                break;  
                            }  
                        }  
                          
                        s = getnameinfo (&in_addr, in_len,  
                                       hbuf, sizeof hbuf,  
                                       sbuf, sizeof sbuf,  
                                       NI_NUMERICHOST | NI_NUMERICSERV);  
                        if (s == 0)  
                        {  
                          printf("Accepted connection on descriptor %d "  
                                 "(host=%s, port=%s)
", infd, hbuf, sbuf);  
                        }  
                          
                        /* 设置新接受的socket连接无阻塞*/  
                        s = set_socket_non_blocking (infd);  
                        if (s == -1)  
                        {  
                        return 1;  
                        }  
                          
                        //注册新事件到epoll  
                        event.data.fd = infd;  
                        event.events = EPOLLIN | EPOLLET;  
                        s = epoll_ctl(efd, EPOLL_CTL_ADD, infd, &event);  
                        if (s == -1)  
                        {  
                          perror ("epoll_ctl");  
                          return 1;  
                        }  
                    }  
                    continue;  
                }  
                //数据可读  
                else  
                {  
                  int done = 0;  
                  while (1)  
                  {  
                      ssize_t count;  
                      char buf[512];  
                      count = read(events[i].data.fd, buf, sizeof(buf));  
                      if(count == -1)  
                      {  
                          //数据读完  
                          if (errno != EAGAIN)  
                          {  
                              perror ("read");  
                              done = 1;  
                          }  
                          break;  
                      }  
                      else if(count == 0)  
                      {  
                          /* End of file. The remote has closed the 
                             connection. */  
                          done = 1;  
                          break;  
                       }  
      
                      printf("recv: %s
", buf);  
                    }  
      
                  if (done)  
                  {  
                      printf ("Closed connection on descriptor %d
", events[i].data.fd);  
                      close (events[i].data.fd);  
                  }  
                }  
            }  
        }  
      
      free (events);  
      close(sockfd);  
      return 0;  
    }  

client端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netdb.h>  
    #include <sys/types.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
      
    int main(int argc,char *argv[])  
    {  
        if(argc!=3)  
        {  
            printf("%s: input IP & port
",argv[0]);  
            return 1;  
        }  
        int sockfd,numbytes;  
        char buf[100] = "hello world";  
        struct hostent *he;  
        struct sockaddr_in their_addr;  
          
        //将基本名字和地址转换  
        he = gethostbyname(argv[1]);  
          
        //建立一个TCP套接口  
        if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)  
        {  
            perror("socket");  
            exit(1);  
        }  
          
        //初始化结构体  
        their_addr.sin_family = AF_INET;  
        their_addr.sin_port = htons(atoi(argv[2]));  
        their_addr.sin_addr = *((struct in_addr *)he->h_addr);  
        bzero(&(their_addr.sin_zero),8);  
          
        //和服务器建立连接  
        if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("connect");  
            exit(1);  
        }  
      
          
        //向服务器发送字符串  
        while(1)  
        {  
            if(send(sockfd,buf,strlen(buf),0)==-1)  
            {  
                perror("send");  
                exit(1);  
            }  
            sleep(2);  
        }  
        memset(buf,0,sizeof(buf));  
          
        close(sockfd);  
        return 0;  
    }  

运行:
$ ./bin/server    
server is running!
Accepted connection on descriptor 5 (host=10.32.49.10, port=39001)
recv: hello world
recv: hello world
recv: hello world
recv: hello world

./bin/client 10.32.49.10 7092

异步IO:
在一个进程发出IO请求后直接返回,内核在整个操作(包括将数据复制到进程缓冲区)完成后通知进程,如图:


代码
server端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
    #include <fcntl.h>  
    #include <aio.h>  
    #include <pthread.h>  
      
    #define BUF_SIZE 1024  
      
      
    void aio_completion_handler(sigval_t sigval);  
      
    void setup_io(int fd, aiocb& my_aiocb)  
    {  
        //初始化AIO请求  
        bzero( (char *)&my_aiocb, sizeof(struct aiocb) );  
        my_aiocb.aio_fildes = fd;  
        my_aiocb.aio_buf = malloc(BUF_SIZE+1);  
        my_aiocb.aio_nbytes = BUF_SIZE;  
        my_aiocb.aio_offset = 0;  
          
        //设置线程回调函数  
        my_aiocb.aio_sigevent.sigev_notify = SIGEV_THREAD;  
        my_aiocb.aio_sigevent.sigev_notify_function = aio_completion_handler;  
        my_aiocb.aio_sigevent.sigev_notify_attributes = NULL;  
        my_aiocb.aio_sigevent.sigev_value.sival_ptr = &my_aiocb;  
    }  
      
    //回调函数  
    void aio_completion_handler(sigval_t sigval)  
    {  
        struct aiocb *req;  
        int ret;  
          
        req = (struct aiocb *)sigval.sival_ptr;  
          
        if (aio_error(req) == 0)   
        {  
            if((ret = aio_return(req)) > 0)  
            {  
                printf("Thread id %u recv:%s
", (unsigned int)pthread_self(), (char*)req->aio_buf);  
            }  
        }  
      
        char* buf = (char*)req->aio_buf;  
          
        if(send(req->aio_fildes, buf, strlen(buf), 0) == -1)  
        {  
            perror("send");  
            return;  
        }  
      
        close(req->aio_fildes);  
      
        return;  
    }  
      
    int main()  
    {  
        int sockfd;  
        int sin_size;  
        struct sockaddr_in addr, cliaddr;  
          
        //创建socket  
        if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)  
        {  
            perror("createSocket");  
            return -1;  
        }  
          
        //初始化socket结构  
        memset(&addr, 0, sizeof(addr));  
        addr.sin_family = AF_INET;  
        addr.sin_port = htons(7092);  
        addr.sin_addr.s_addr = htonl(INADDR_ANY);  
          
        //绑定套接口  
        if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("bind");  
            return -1;  
        }  
          
        //创建监听套接口  
        if(listen(sockfd,10)==-1)  
        {  
            perror("listen");  
            return -1;  
        }  
          
          
        printf("server is running!
");  
          
        //等待连接  
        while(1)   
        {  
            int new_fd;  
            struct aiocb my_aiocb;  
            sin_size = sizeof(struct sockaddr_in);  
              
            //接受连接  
            if((new_fd = accept(sockfd, (struct sockaddr *)&cliaddr, (socklen_t*)&sin_size))==-1)  
            {  
                perror("accept");  
                return -1;  
            }  
      
            printf("Thread id %u accept connect, fd: %d
", (unsigned int)pthread_self(), new_fd);  
              
            setup_io(new_fd, my_aiocb);  
            aio_read(&my_aiocb);  
        }  
        close(sockfd);  
    }  

client端:

    #include <stdio.h>  
    #include <stdlib.h>  
    #include <errno.h>  
    #include <string.h>  
    #include <netdb.h>  
    #include <sys/types.h>  
    #include <netinet/in.h>  
    #include <sys/socket.h>  
    #include <unistd.h>  
      
    int main(int argc,char *argv[])  
    {  
        if(argc!=3)  
        {  
            printf("%s: input IP & port
",argv[0]);  
            return 1;  
        }  
        int sockfd,numbytes;  
        char buf[100] = "hello world";  
        struct hostent *he;  
        struct sockaddr_in their_addr;  
          
        //将基本名字和地址转换  
        he = gethostbyname(argv[1]);  
          
        //建立一个TCP套接口  
        if((sockfd = socket(AF_INET,SOCK_STREAM,0))==-1)  
        {  
            perror("socket");  
            exit(1);  
        }  
          
        //初始化结构体  
        their_addr.sin_family = AF_INET;  
        their_addr.sin_port = htons(atoi(argv[2]));  
        their_addr.sin_addr = *((struct in_addr *)he->h_addr);  
        bzero(&(their_addr.sin_zero),8);  
          
        //和服务器建立连接  
        if(connect(sockfd,(struct sockaddr *)&their_addr,sizeof(struct sockaddr))==-1)  
        {  
            perror("connect");  
            exit(1);  
        }  
      
          
        //向服务器发送字符串  
        if(send(sockfd,buf,strlen(buf),0)==-1)  
        {  
            perror("send");  
            exit(1);  
        }  
       
            //接收数据  
        if((numbytes = recv(sockfd, buf, 100, 0)) == -1)  
        {  
            perror("recv");  
            return 1;  
        }  
      
        printf("recv: %s
", buf);  
          
        close(sockfd);  
        return 0;  
    }  


运行:
$ ./bin/server
server is running!
Thread id 2505492000 accept connect, fd: 4
Thread id 1084246368 recv:hello world
(注意:线程ID不一样)

$ ./bin/client 10.32.49.10 7092
recv: hello world


信号驱动IO:
使用信号驱动I/O时,当网络套接字可读后,内核通过发送SIGIO信号通知应用进程,于是应用可以开始读取数据。如图:

为了让套接字描述符可以工作于信号驱动I/O模式,应用进程必须完成如下三步设置:
1.注册SIGIO信号处理程序。(安装信号处理器)
2.使用fcntl的F_SETOWN命令,设置套接字所有者。(设置套接字的所有者)
3.使用fcntl的F_SETFL命令,置O_ASYNC标志,允许套接字信号驱动I/O。(允许这个套接字进行信号输入输出)
注意,必须保证在设置套接字所有者之前,向系统注册信号处理程序,否则就有可能在fcntl调用后,信号处理程序注册前内核向应用交付SIGIO信号,导致应用丢失此信号。

在UDP编程中使用信号驱动I/O,此时SIGIO信号产生于下面两种情况:
套接字收到一个数据报。
套接字上发生了异步错误。
因此,当应用因为收到一个UDP数据报而产生的SIGIO时,要么可以调用recvfrom读取该数据报,要么得到一个异步错误。
对于TCP编程,信号驱动I/O就没有太大意义了,因为对于流式套接字而言,有很多情况都可以导致SIGIO产生,而应用又无法区分是什么具体情况导致该信号产生的
信号驱动IO模型在网络编程中极少使用,这里不写例子了,有兴趣的同学可以参考:http://blog.csdn.net/yskcg/article/details/6021275

例子源码打包下载:
http://download.csdn.net/detail/yfkiss/4288465

本文转自:http://blog.csdn.net/yfkiss/article/details/7516589

原文地址:https://www.cnblogs.com/labi/p/3574709.html