网络最大流入门

听说网络流的时代要来临了

概念

在有向图(G(V,E))中:

仅有一个入度为(0)的点(S),称为源点

仅有一个出度为(0)的点(T),称为汇点

每条边权值非负,称为该边的容量,记作(c(u,v))

弧的流量:容量网络中每条边的实际流量,记作(f(u,v))

网络流:容量网络中所有弧上流量的集合(f={f(u,v)})

残量网络:所有点和没有满流的边构成的图被称为残量网络

增广路:残量网络中从源点(S)到汇点(T)的路径被称为增广路

零流:网络流上每条弧上流量都为(0)

伪流:只满足容量限制,不满足流守恒的网络流(据说预流推进有用)

性质

1.容量限制:每条边的实际流量(f(u,v))不超过它的容量(c(u,v))(c(u,v)-f(u,v))被称为剩余流量

2.斜对称:(f(u,v)=-f(v,u))

3.流守恒:除了源点和汇点之外,其余各点流入和流出的流量相等

EK算法

基本思想:通过(BFS)不断寻找增广路并添加回流求出最大流

首先我们解释怎么进行回流:

现在我们有一个画的很丑的网络流图……

我们在上面添加反向边,边权全部为0:

然后通过bfs找增广路,假设找到了蓝色这一条:

(emm)我们发现路径上最小流量为(1),我们把答案(+1),把蓝色路线上的流量全部(-1),然后就没法继续增广了

但是显然答案应该是(2)

这时我们应该将路线上反向边流量(+1)

此时我们继续寻找增广路,会发现另外一条

再将答案(+1)就得到正确结果了

我们发现对于中间那条边,我们正向流过一次,反向流过一次,然后流量恢复到了初始时刻的状态

也就是说反向边给了网络流一个反悔的机会,可以让边上的流量退回到以前的状态,相当于让两条本不应该交叉的增广路变成合法状态

可以证明:每次增广都会使得流量增加,且增加次数与流量大小无关,是多项式级别的复杂度

其实EK算法复杂度上界是(O(nm^2)),实际复杂度一般达不到上界

Dinic算法

但是(EK)算法复杂度仍然有点高,最高可达(O(n^5)),我们对其进行优化

观察到在(EK)算法中我们每次寻找一条增广路,效率较低,我们尝试每次寻找多条增广路

(Dinic)算法是在残量网络的分层图上(DFS)寻找增广路的算法

规定节点的层是该点到源点的最短距离,原图中所有的点和连接不同层的点之间的边(未饱和弧)构成的子图称为分层图

我们每次用(BFS)在残量网络上构造分层图,然后通过(DFS)在分层图上寻找增广路。改变流量过程与(EK)算法一致,直到无法找到新的增广路为止

理论复杂度上界为(O(n^2m))但是法律规定不许卡dinic

但是某谷的模板题(n^2m)上界达到(10^{13})也有点过分了吧

展开查看

```cpp
#include
#include
#include
#include
#include
#include
using namespace std;
namespace red{
#define int long long
#define eps (1e-8)
	inline int read()
	{
		int x=0;char ch,f=1;
		for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
		if(ch=='-') f=0,ch=getchar();
		while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
		return f?x:-x;
	}
	const int N=10010,inf=0x3f3f3f3f;
	int n,m,e,ret,tim,st,ed;
	int head[N],cnt=1;//记得从1开始,不然异或一下就变成0了
	struct point
	{
		int nxt,to,val;
		point(){}
		point(const int &nxt,const int &to,const int &val):nxt(nxt),to(to),val(val){}
	}a[N<<5];
	inline void link(int x,int y,int z)
	{
		a[++cnt]=(point){head[x],y,z};head[x]=cnt;
		a[++cnt]=(point){head[y],x,0};head[y]=cnt;
	}
	int dis[N];
	queue q;
	inline bool bfs()
	{
		memset(dis,0,sizeof(dis));//分层
		q.push(st);dis[st]=1;//初始不赋成1会锅
		while(!q.empty())
		{
			int now=q.front();
			q.pop();
			for(int i=head[now];i;i=a[i].nxt)
			{
				int t=a[i].to;
				if(!dis[t]&&a[i].val)//下个点没被分过层且这条弧还有用
				{
					dis[t]=dis[now]+1;
					q.push(t);
				}
			}
		}
		return dis[ed];
	}
	inline int dfs(int now,int c)
	{
		if(now==ed||!c) return c;//到达汇点或者没流量了
		int ret=c,f;
		for(int i=head[now];i;i=a[i].nxt)
		{
			int t=a[i].to;
			if(dis[t]==dis[now]+1)
			{
				f=dfs(t,min(ret,a[i].val));
				ret-=f;
				a[i].val-=f;
				a[i^1].val+=f;
				if(!ret) return c;//当前流量流完了
			}
		}
		if(ret==c) dis[now]=0;//废点,没法增广
		return c-ret;
	}
	inline int dinic()
	{
		int ret=0;
		while(bfs()) ret+=dfs(st,inf);
		return ret;
	}
	inline void main()
	{
		n=read(),m=read(),st=read(),ed=read();
		for(int x,y,z,i=1;i<=m;++i)
		{
			x=read(),y=read(),z=read();
			link(x,y,z);
		}
		printf("%lld
",dinic());
	}
}
signed main()
{
	red::main();
return 0;
}
```

当前弧优化

考虑我们(dfs)的过程必然是将某一条边榨干之后再返回,所以这条边其实已经没有用了,我们下次不需要再访问

增加cur数组,每次(BFS)的时候赋值成(head)

for(int i=1;i<=n;++i)
{
	dis[i]=0;
	cur[i]=head[i];
}

然后(DFS)的时候再记录

for(int i=cur[now];i;i=a[i].nxt)
{
	cur[now]=i;	
	int t=a[i].to;
	if(dis[t]==dis[now]+1)
	{
		f=dfs(t,min(ret,a[i].val));
		ret-=f;
		a[i].val-=f;
		a[i^1].val+=f;
		if(!ret) return c;//当前流量流完了
	}
}

最大流一般用来构造一个图然后判断是否满足某些条件,如果最大流达到某个数值说明满足


最小鸽

已知图(G(V,E))是网络流图,假设(g)(V)的一个子集,而且(g)满足:(Sin g,T otin g),这样(g)把顶点分成两部分

割的定义:起点在(g),终点在(overline{g})的边,所组成的集合,为割,记作((g,overline{g}))

((g,overline{g}))中所有边容量的集合称为割的容量,记作(C(g,overline{g}))

最大流最小鸽定理:

网络流的最大流等于最小鸽的容量

证明:不会

但是可以感性理解一下:最大流由增广路上容量最小的边限制,而最小鸽必定是由所有鸽中容量之和最小的一组割构成

原文地址:https://www.cnblogs.com/knife-rose/p/12094721.html