【BZOJ】2956: 模积和

题意

(sum_{i=1}^{n} sum_{j=1}^{m} (n mod i)(m mod j)[i eq j] mod 19940417), ((n, m le 10^9))

分析

以下均设(n le m)

$$ egin{align} & sum_{i=1}^{n} sum_{j=1}^{m} (n mod i)(m mod j)[i eq j] mod 19940417 \

equiv &
left(
sum_{i=1}^{n}
sum_{j=1}^{m}
(n mod i)(m mod j)

sum_{i=1}^{n}
(n mod i cdot m mod i)
ight)
mod 19940417

equiv &
left(
left(
sum_{i=1}^{n}
(n mod i)
ight)
left(
sum_{j=1}^{m}
(m mod i)
ight)

sum_{i=1}^{n}
(n mod i cdot m mod i)
ight)
mod 19940417

end{align}

[</p> 于是我们只需要快速求出$sum_{i=1}^{n} ( n mod i)$和$sum_{i=1}^{n} ( n mod i cdot m mod i )$就能解决问题了。 <p> ]

egin{align}

& sum_{i=1}^{n} ( n mod i)

= &
sum_{i=1}^{n}
left( n - i left lfloor frac{n}{i} ight floor ight)

= &
n^2

sum_{i=1}^{n}
i left lfloor frac{n}{i} ight floor

& sum_{i=1}^{n} ( n mod i cdot m mod i)

= &
sum_{i=1}^{n}
left( n - i left lfloor frac{n}{i} ight floor ight) left( m - i left lfloor frac{m}{i} ight floor ight)

= &
n^2m
+
sum_{i=1}^{n}
i^2 left lfloor frac{n}{i} ight floor left lfloor frac{m}{i} ight floor

nsum_{i=1}^{n}
i left lfloor frac{m}{i} ight floor

msum_{i=1}^{n}
i left lfloor frac{n}{i} ight floor

end{align}

[</p> ## 题解 于是分块大法好... #include <bits/stdc++.h> using namespace std; typedef long long ll; const int mo=19940417; ll cal(int n, ll a) { ll ret=a%mo*n%mo, tp=0; for(int i=1, pos=0; i<=n; i=pos+1) { pos=n/(n/i); tp+=(a/i)%mo*(((ll)(pos+1)*pos/2-(ll)(i-1)*i/2)%mo)%mo; if(tp>=mo) { tp-=mo; } } return (ret-tp+mo)%mo; } int main() { int n, m; scanf("%d%d", &n, &m); if(n>m) { swap(n, m); } printf("%lld ", (cal(n, n)*cal(m, m)%mo-cal(n, (ll)n*m)+mo)%mo); return 0; }]

原文地址:https://www.cnblogs.com/iwtwiioi/p/4985805.html