调度器7—TASK_UNINTERRUPTIBLE和TASK_INTERRUPTIBLE

一、D状态简介

1. D状态的由来

__schedule(bool preempt) {
    ...
    if (prev != next) {
        trace_sched_switch(preempt, prev, next);
    }
    ...
}

trace_sched_switch() 中若 prev->state 为 TASK_UNINTERRUPTIBLE,在解析后的 trace 上就显示为 D 状态。

只要将进程状态设置为 TASK_UNINTERRUPTIBLE,然后触发任务切换将当前任务切走,此时在解析后的trace上看prev线程就是D状态的,若是 TASK_INTERRUPTIBLE,trace上看就是sleep状态。UNINTERRUPTIBLE 的意思是不被信号唤醒。

2. 使用逻辑

(1) 和 schedule_timeout 配合使用,延时到期后由定时器到期后由 process_timeout 函数调用 wake_up_process(timeout->task) 唤醒自己,唤醒函数中会将任务状态设置为 TASK_RUNNING。

static int sdias_sclp_send(struct sclp_req *req) //sclp_sdias.c
{
    for (...) {
        set_current_state(TASK_INTERRUPTIBLE);
        schedule_timeout(msecs_to_jiffies(500));
    }
}

(2) 和 hrtime 配合使用

和 schedule_timeout 搭配使用的时间精度是 jiffify,精度太低。可以使用高精度定时器,定时器到期后使用 hrtimer_wakeup 来唤醒任务。

int jbd2_journal_stop(handle_t *handle) //transaction.c
{
    ...
    ktime_t expires = ktime_add_ns(ktime_get(), commit_time);
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
    ....
}

(3) 和等待队列配合使用,当条件满足时唤醒自己

init_waitqueue_head(&pp->wait);

static int smu_release(struct inode *inode, struct file *file) //smu.c
{
    ...
    DECLARE_WAITQUEUE(wait, current);
    add_wait_queue(&pp->wait, &wait);

    for (;;) {
        set_current_state(TASK_UNINTERRUPTIBLE);
        schedule();
        if (pp->cmd.status != 1)
            break;
        }
    }
    remove_wait_queue(&pp->wait, &wait);
    ...
}

wake_up_all(&pp->wait);

先定义一个全局等待队列头 wait_queue_head_t 结构,然后再定义一个 wait_queue_entry 结构来保存需要唤醒的任务和指定唤醒函数 default_wake_function(默认),然后将 wait_queue_entry 挂在全局链表 wait_queue_head_t 上,当条件满足时调用 wake_up_all 相关函数唤醒全局链表上的任务,任务唤醒后判断条件是否满足,满足就退出,不满足就切出任务继续休眠。
注意这里的 wait_queue_entry wait 是一个局部变量,保存在栈中,由于进程休眠后此函数没有退出,没有退栈,因此是没有问题的。

3. 可以指定唤醒何种状态的任务

int wake_up_state(struct task_struct *p, unsigned int state);
int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags, int sibling_count_hint);
/* 常用的 wake_up_q 只用户唤醒 interrupt 和 uninterruptable 类型的任务 */
void wake_up_q(struct wake_q_head *head) {
    try_to_wake_up(task, TASK_NORMAL, 0, 1); //TASK_NORMAL == (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
}

这里有个参数 state,是个掩码,只唤醒此时是这个掩码包含状态的任务,与它交集为空的任务不唤醒。

二、D状态的使用机制

1. 大量驱动中进行自定义使用

就是上面三种使用方式,先 set_current_state(TASK_UNINTERRUPTIBLE) 然后再将任务切走,并等待唤醒。

2. swait/swakeup机制

__swait_XXX 函数进入等待,swake_up_XXX 唤醒,就是对上面机制的简单封转,见 swait.c/swait.h

3. wait/wakeup机制

wait_event_XXX 函数进入等待,__wake_up_XXX 唤醒,就是对上面机制的简单封转,见 wait.c/wait.h

4. wait_on_bit/wake_up_bit

wait_on_bit_XXX 函数进入等待,wake_up_bit 等函数唤醒,就是对上面机制的简单封转,见 wait_bit.c/wait_bit.h

5. semaphore

/* 使用的是 TASK_UNINTERRUPTIBLE */
extern void down(struct semaphore *sem);
extern int __must_check down_timeout(struct semaphore *sem, long jiffies);

/* 使用的是 TASK_INTERRUPTIBLE */
extern int __must_check down_interruptible(struct semaphore *sem);

/* 使用的是 TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) */
extern int __must_check down_killable(struct semaphore *sem);

/* 只对  sem->count - 1 进行判断 */
extern int __must_check down_trylock(struct semaphore *sem);
/* 使用 list_first_entry(&sem->wait_list, ...) 只唤醒wait链表上的首个任务 */
extern void up(struct semaphore *sem);

6. rwsem

/* 使用的是 TASK_UNINTERRUPTIBLE */
void __sched down_read(struct rw_semaphore *sem);
void __sched down_write(struct rw_semaphore *sem);

/* 使用的是 TASK_KILLABLE */
int __sched down_read_killable(struct rw_semaphore *sem);
int __sched down_write_killable(struct rw_semaphore *sem);

读写信号量导出的函数中只使用了 TASK_UNINTERRUPTIBLE,没有使用 TASK_INTERRUPTIBLE,实现见 rwsem.c

7. mutex

/* 使用的是 TASK_UNINTERRUPTIBLE */
void __sched mutex_lock(struct mutex *lock);

/* 使用的是 TASK_INTERRUPTIBLE */
int __sched mutex_lock_interruptible(struct mutex *lock)

/* 使用的是 TASK_KILLABLE */
int __sched mutex_lock_killable(struct mutex *lock)

8. rtmutex

/* 使用的是 TASK_UNINTERRUPTIBLE */
void __sched rt_mutex_lock(struct rt_mutex *lock)

/* 使用的是 TASK_INTERRUPTIBLE */
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
int rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)

9. completion

/* 使用的是 TASK_UNINTERRUPTIBLE */
void __sched wait_for_completion(struct completion *x)
unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout);
void __sched wait_for_completion_io(struct completion *x)
unsigned long __sched wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)

/* 使用的是 TASK_INTERRUPTIBLE */
int __sched wait_for_completion_interruptible(struct completion *x)

/* 使用的是 TASK_KILLABLE */
int __sched wait_for_completion_killable(struct completion *x)
long __sched wait_for_completion_killable_timeout(struct completion *x, unsigned long timeout)

10. futex 用户空间锁

/* 使用的是 TASK_INTERRUPTIBLE,然后使用 wake_up_q 唤醒 */
void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout) //futex.c

注:以上是在 5.4 内核中检索 TASK_UNINTERRUPTIBLE,然后删除重复项得出来的,应该是比较全面。


三、测试例子

 kernel_uninter.c:

#define pr_fmt(fmt) "mytest: " fmt

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sysfs.h>
#include <linux/string.h>
#include <linux/wait.h>
#include <linux/sched.h>


#define mytest_attr(_name) 
static struct kobj_attribute _name##_attr = {    
    .attr    = {                
        .name = __stringify(_name),    
        .mode = 0644,            
    },                    
    .show    = _name##_show,            
    .store    = _name##_store,        
}

#define mytest_attr_ro(_name) 
static struct kobj_attribute _name##_attr = {    
    .attr    = {                
        .name = __stringify(_name),    
        .mode = S_IRUGO,        
    },                    
    .show    = _name##_show,            
}

#define mytest_attr_wo(_name) 
static struct kobj_attribute _name##_attr = {    
    .attr    = {                
        .name = __stringify(_name),    
        .mode = S_IWUGO,        
    },                    
    .store    = _name##_store,        
}


struct mytest {
    int tri_value;
    struct kobject *kobj;
    wait_queue_head_t uninter_wait;
    wait_queue_head_t inter_wait;
    wait_queue_head_t killable_wait;
};

struct mytest test;

//works ok
ssize_t uninter_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) {
    if (test.tri_value != 1) {
        DECLARE_WAITQUEUE(wait, current);
        add_wait_queue(&test.uninter_wait, &wait);
        for (;;) {
            set_current_state(TASK_UNINTERRUPTIBLE);
            schedule();
            pr_info("uninter pid=%d %d was waken up! state=0x%lx
", current->pid,
                ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state);
            if (test.tri_value == 1) {
                break;
            }
        }
        remove_wait_queue(&test.uninter_wait, &wait);
    }
    return sprintf(buf, "%d
", test.tri_value);
}
mytest_attr_ro(uninter);

//works bad
ssize_t inter_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) {
    if (test.tri_value != 2) {
        DECLARE_WAITQUEUE(wait, current);
        add_wait_queue(&test.inter_wait, &wait);
        for (;;) {
            set_current_state(TASK_INTERRUPTIBLE);
            schedule();
            pr_info("inter pid=%d %d was waken up! state=0x%lx
", current->pid,
                ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state);
            if (test.tri_value == 2) { //process signal
                break;
            }
        }
        remove_wait_queue(&test.inter_wait, &wait);
    }
    return sprintf(buf, "%d
", test.tri_value);
}
mytest_attr_ro(inter);

//works bad
ssize_t killable_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) {
    if (test.tri_value != 3) {
        DECLARE_WAITQUEUE(wait, current);
        add_wait_queue(&test.killable_wait, &wait);
        for (;;) {
            set_current_state(TASK_KILLABLE);
            schedule();
            pr_info("killable pid=%d %d was waken up! state=0x%lx
", current->pid,
                    ((struct task_struct *)wait.private)->pid, ((struct task_struct *)wait.private)->state);
            if (test.tri_value == 3) {
                break;
            }
        }
        remove_wait_queue(&test.killable_wait, &wait);
    }
    return sprintf(buf, "%d
", test.tri_value);
}
mytest_attr_ro(killable);


ssize_t trigger_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) {
    int val;

    if (sscanf(buf, "%d", &val) != 1) {
        return -EINVAL;
    }
    test.tri_value = val;

    switch(test.tri_value) {
    case 1:
        wake_up_all(&test.uninter_wait);
        break;
    case 2:
        wake_up_all(&test.inter_wait);
        break;
    case 3:
        wake_up_all(&test.killable_wait);
        break;
    default:
        break;
    }

    return count;
}

ssize_t trigger_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) {
    return sprintf(buf, "%d
", test.tri_value);
}

mytest_attr(trigger);

static struct attribute *mytest_attrs[] = {
    &uninter_attr.attr,
    &inter_attr.attr,
    &killable_attr.attr,
    &trigger_attr.attr,
    NULL,
};

static struct attribute_group mytest_attr_group = {
    .name = "mytest",
    .attrs = mytest_attrs,
};


static int mytest_device_file_init(void) {
    int ret = 0;

    test.kobj = kobject_create_and_add("test", NULL);
    if (!test.kobj) {
        pr_info("kobject_create_and_add failed!
");
        return -ENOMEM;
    }

    ret = sysfs_create_group(test.kobj, &mytest_attr_group);
    if (ret) {
        pr_info("sysfs_create_group failed!
");
        return ret;
    }

    return ret;
}

static int __init mytest_init(void)
{
    int ret;

    init_waitqueue_head(&test.uninter_wait);
    init_waitqueue_head(&test.inter_wait);
    init_waitqueue_head(&test.killable_wait);

    ret = mytest_device_file_init();

    pr_info("mytest_init probed! ret=%d
", ret);

    return ret;
}

static void __exit mytest_exit(void)
{
    sysfs_remove_group(test.kobj, &mytest_attr_group);
    kobject_put(test.kobj);
    pr_info("mytest_exit removed
");
}

module_init(mytest_init);
module_exit(mytest_exit);

MODULE_LICENSE("GPL");

Makefile:

obj-m += kernel_uninter.o

all:
    make -C /lib/modules/`uname -r`/build M=$(PWD)
    rm -rf *.o *.o.cmd *.ko.cmd *.order *.symvers *.mod.c .tmp_versions

clean:
    rm -rf *.ko

测试结果:

# cat /sys/test/mytest/killable
# kill -17 > <pid_killable>  //对SIGCHLD没有任何反应
# kill -9 > <pid_killable> //SIGKILL信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息
# kill -14 > <pid_killable> //SIGALRM信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息
# kill -29 > <pid_killable> //SIGIO信号,疯狂打印模块中加的pid等于 pid_killable 的唤醒信息
# echo 3 > trigger //只有这样才能救

killable 类型的休眠,不仅对 kill 信号,而且对非 kill 信号也响应,而且若是没有返回用户空间会一直响应

# /sys/test/mytest/uninter
# ^C //不响应,dmesg看log无打印
# kill -9 > <pid_uninter> //SIGKILL信号不响应

uninterruptable 类型的休眠对任何信号都不响应,对SIGKILL、SIGBUS都不响应,任何信号都无法唤醒它

针对 inter 和 killable 被信号持续唤醒修正:

/* 在 break 的判断条件里面加上对信号pending的判断  */
signal_pending(current)

在 inter 和 killable 的唤醒位置加或上 signal_pending(current) 的判断修正后:

# while true; do cat /sys/test/mytest/killable; done
# kill -17 <pid_killable> //另一个终端执行,对SIGCHLD不响应。
# kill -7 <pid_killable> //另一个终端执行,对SIGBUS不响应。
# kill -9 <pid_killable> //另一个终端执行,对SIGKILL响应,用户空间命令只是打印“Killed”,但是并没有停止运行,且PID变更了。
# kill -9 <pid_killable> //另一个终端执行,每次对SIGKILL的响应PID都会变更。############
# kill -2 <pid_killable> //另一个终端执行,对SIGINT响应,用户空间也直接退出

# while true; do cat /sys/test/mytest/inter; done
# kill -9 <pid_inter> //另一个终端执行,对SIGKILL响应,用户空间命令只是打印“Killed”,但是并没有停止运行,且PID变更了。
# kill -2 <pid_inter> //另一个终端执行,对SIGINT响应,用户空间也直接退出

# cat /sys/test/mytest/uninter
# kill -9 <pid_inter> //另一个终端执行,无响应
# kill -2 <pid_inter> //另一个终端执行,无响应

试验结论:

1. 对于 TASK_INTERRUPTIBLE 和 TASK_KILLABLE 类型的信号若是不处理,信号就会一直存在,一直持续唤醒任务,拉高系统负载,把系统搞死。它需要在返回用户空间时执行TASK_UNINTERRUPTIBLE 类型的睡眠任何信号都唤醒不了,无需对是否有pending信号进行判断

2. 用户空间的程序一直执行,每次接收到SIGKILL信号,其PID还可以一直变,但是任务一直运行不退出。

3. 三种休眠对 SIGCHILD 都不响应。

4. wake_up_all() 会唤醒所有等待的任务。

四、结论

1. 大多数机制都是支持 interrupt 和 uninterrupt 的两种进入等待方式的。内核中的锁相关机制若无特殊标识,一般是使用 TASK_UNINTERRUPTIBLE而用户空间锁机制,在内核中使用的是TASK_INTERRUPTIBLE

原文地址:https://www.cnblogs.com/hellokitty2/p/15415178.html