luogu1771 方程的解

题目大意

对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数),x,k是给定的数。我们要求的是这个不定方程的正整数解组数。

DP(暴力)解法

定义F(p, rest)为第p个数,p及p后面的数的和为rest的解的数量,递归式为:F(p, rest)=if(rest==0)0 else if (p == k) rest else sum foreach curVal(0<curVal<=rest) F(p, rest - curVal)。

不用高精度,本方法能得40分。

注意

curVal<=rest就可以了,反正如果curVal大了以后也能返回0,不要擅自进一步缩小curVal的范围。

#include <cstdio>
#include <cstring>
using namespace std;

#define ll long long
#define _NDEBUG

const int MAX_K = 110, MAX_X = 1010, P = 1000;
ll F[MAX_K][MAX_X];
ll K, X;

ll Mult(ll a, ll b, ll p)
{
	ll ans = 0;
	while (b)
	{
		if (b & 1)
			ans = (ans + a) % p;
		a = (a + a) % p;
		b >>= 1;
	}
	return ans;
}

ll Power(int a, int n, int p)
{
	ll ans = 1;
	while (n)
	{
		if (n & 1)
			ans = Mult(ans, a, p);
		a = Mult(a, a, p);
		n >>= 1;
	}
	return ans;
}

ll DP(int p, ll rest)
{
	if (F[p][rest] != -1)
		return F[p][rest];
	if (rest == 0)
		return F[p][rest] = 0;
	if (p == K)
		return F[p][rest] = 1;
	F[p][rest] = 0;
	for (int i = 1; i <= rest; i++)
		F[p][rest] += DP(p + 1, rest - i);
	return F[p][rest];
}

int main()
{
	scanf("%lld%lld", &K, &X);
	memset(F, -1, sizeof(F));
	printf("%lld
", DP(1, Power(X, X, P)));
	return 0;
}

组合数学解法

把x^x%1000看作一个线段,a1,a2...看作一个个隔板划分出的区域,这就是组合数学中的隔板模型,最终结果为C(k,x^x%1000)

注意

  • 求组合数的模板就这样定死了,不要改。
  • 高精度里最好把=运算符写上。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define ll long long

const int MAX_K = 110, MAX_X = 1010, P = 1000, BASE = 10000, CARRY = 4, MAX_LEN = 1010;
ll K, X;

ll Mult(ll a, ll b, ll p)
{
	ll ans = 0;
	while (b)
	{
		if (b & 1)
			ans = (ans + a) % p;
		a = (a + a) % p;
		b >>= 1;
	}
	return ans;
}

ll Power(int a, int n, int p)
{
	ll ans = 1;
	while (n)
	{
		if (n & 1)
			ans = Mult(ans, a, p);
		a = Mult(a, a, p);
		n >>= 1;
	}
	return ans;
}

struct BigInt
{
private:
	int A[MAX_LEN];
	int Len;

public:
	void Clear()
	{
		memset(A, 0, sizeof(A));
		Len = 0;
	}

	void Set(int x)
	{
		Clear();
		while (x)
		{
			A[Len++] = x%BASE;
			x /= BASE;
		}
		while (A[Len] == 0 && Len > 0)
			Len--;
	}

	BigInt() { Clear(); }

	BigInt operator = (const int x)
	{
		Set(x);
		return *this;
	}

	BigInt operator = (const BigInt &a)
	{
		memcpy(A, a.A, sizeof(A));
		Len = a.Len;
		return *this;
	}

	void Print()
	{
		printf("%d", A[Len]);
		for (int i = Len - 1; i >= 0; i--)
			printf("%0*d", CARRY, A[i]);
		printf("
");
	}

	BigInt operator += (const BigInt &a)
	{
		Len = max(Len, a.Len);
		for (int i = 0; i <= Len; i++)
		{
			A[i] += a.A[i];
			A[i + 1] += A[i] / BASE;
			A[i] %= BASE;
		}
		if (A[Len + 1])
			Len++;
		return *this;
	}

	BigInt operator + (const BigInt &a)
	{
		BigInt Num = *this;
		return Num += a;
	}
};

BigInt Comb(int r, int n)
{
	static BigInt C[MAX_K];
	C[0] = 1;
	for (int i = 1; i <= n; i++)
	{
		for (int j = min(r, i); j > 0; j--)
		{
			if (i == j)
				C[j] = 1;
			else
				C[j] = C[j - 1] + C[j];
		}
	}
	return C[r];
}

int main()
{
	scanf("%lld%lld", &K, &X);
	Comb(K - 1, Power(X,X,P) - 1).Print();
	return 0;
}

  

原文地址:https://www.cnblogs.com/headboy2002/p/8886493.html