ava集合---LinkedList源码解析

一、源码解析

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable

LinkedList是一个继承于AbstractSequentialList的双向链表,它可以被当做堆栈、队列或双端队列进行操作

LinkedList实现了List接口,能够对它进行队列操作

LinkedList实现了Deque接口,即能将LinkedList当成双端队列使用

LinkedList实现了Cloneable接口,覆盖了clone()方法。可以进行克隆

LinkedList实现了Serializable接口,这意味着,LinkeList支持序列化操作。能通过序列化去传输

LinkedList是非同步的

  

为什么要继承自AbstractSequentialList ?

AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些骨干性函数。降低了List接口的复杂度。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。

此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。

LinkedList的类图关系:

  

 2.linkedList数据结构原理

  LinkedList底层的数据结构是基于双向链表的,且头结点中不存放数据如下图


既然是双向链表,那么必定存在一种数据结构------我们被称为节点,节点实例保存业务数据,前一个节点的位置信息和后一个节点的位置信息如下图所示

 

3.私有属性

  LinkedList中定义了两个私有属性

private transient Entry<E> header = new Entry<E>(null, null, null);

private transient int size = 0;

 header是双向链表的头节点,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节  点,next是该节点的下一个节点,element是该节点所包含的值。 
  size是双向链表中节点实例的个数。

  首先来了解节点类Entry类的代码。

  

private static class Entry<E> {
   E element;
    Entry<E> next;
    Entry<E> previous;

    Entry(E element, Entry<E> next, Entry<E> previous) {
        this.element = element;
        this.next = next;
        this.previous = previous;
   }
}

节点类很简单,element存放业务数据,previous与next分别存放前后节点的信息(在数据结构中我们通常称之为前后节点的指针)。

4.LinkedList的构造方法:

public LinkedList() {
    header.next = header.previous = header;
}
public LinkedList(Collection<? extends E> c) {
    this();
   addAll(c);
}

  第一个构造方法不接受参数,将header实例的previous和next全部指向header实例(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。

执行完构造函数后,header实例自身形成一个闭环,如下图所示:

  

  第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。

5.元素的添加

  

public boolean addAll(Collection<? extends E> c) {
    return addAll(size, c);
}
// index参数指定collection中插入的第一个元素的位置
public boolean addAll(int index, Collection<? extends E> c) {
    // 插入位置超过了链表的长度或小于0,报IndexOutOfBoundsException异常
    if (index < 0 || index > size)
        throw new IndexOutOfBoundsException("Index: "+index+
                                                ", Size: "+size);
    Object[] a = c.toArray();
   int numNew = a.length;
   // 若需要插入的节点个数为0则返回false,表示没有插入元素
    if (numNew==0)
        return false;
    modCount++;//否则,插入对象,链表修改次数加1
    // 保存index处的节点。插入位置如果是size,则在头结点前面插入,否则在获取index处的节点插入
    Entry<E> successor = (index==size ? header : entry(index));
    // 获取前一个节点,插入时需要修改这个节点的next引用
    Entry<E> predecessor = successor.previous;
    // 按顺序将a数组中的第一个元素插入到index处,将之后的元素插在这个元素后面
    for (int i=0; i<numNew; i++) {
        // 结合Entry的构造方法,这条语句是插入操作,相当于C语言中链表中插入节点并修改指针
        Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
        // 插入节点后将前一节点的next指向当前节点,相当于修改前一节点的next指针
        predecessor.next = e;
        // 相当于C语言中成功插入元素后将指针向后移动一个位置以实现循环的功能
        predecessor = e;
  }
    // 插入元素前index处的元素链接到插入的Collection的最后一个节点
    successor.previous = predecessor;
    // 修改size
    size += numNew;
    return true;
}

构造方法中的调用了addAll(Collection<? extends E> c)方法,而在addAll(Collection<? extends E> c)方法中仅仅是将size当做index参数调用了addAll(int index,Collection<? extends E> c)方法。

private Entry<E> entry(int index) {
        if (index < 0 || index >= size)
            throw new IndexOutOfBoundsException("Index: "+index+
                                                ", Size: "+size);
        Entry<E> e = header;
        // 根据这个判断决定从哪个方向遍历这个链表
        if (index < (size >> 1)) {
            for (int i = 0; i <= index; i++)
                e = e.next;
        } else {
            // 可以通过header节点向前遍历,说明这个一个循环双向链表,header的previous指向链表的最后一个节点,这也验证了构造方法中对于header节点的前后节点均指向自己的解释
            for (int i = size; i > index; i--)
                e = e.previous;
       }
        return e;
    }

下面说明双向链表添加元素的原理:

6.添加元素add

  

// 将元素(E)添加到LinkedList中
     public boolean add(E e) {
         // 将节点(节点数据是e)添加到表头(header)之前。
         // 即,将节点添加到双向链表的末端。
         addBefore(e, header);
         return true;
     }

     public void add(int index, E element) {
         addBefore(element, (index==size ? header : entry(index)));
     }
    
    private Entry<E> addBefore(E e, Entry<E> entry) {
         Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
         newEntry.previous.next = newEntry;
         newEntry.next.previous = newEntry;
         size++;
         modCount++;
         return newEntry;
    }

addBefore(E e,Entry<E> entry)方法是个私有方法,所以无法在外部程序中调用(当然,这是一般情况,你可以通过反射上面的还是能调用到的)。

addBefore(E e,Entry<E> entry)先通过Entry的构造方法创建e的节点newEntry(包含了将其下一个节点设置为entry,上一个节点设置为entry.previous的操作,相当于修改newEntry的“指针”),之后修改插入位置后newEntry的前一节点的next引用和后一节点的previous引用,使链表节点间的引用关系保持正确。之后修改和size大小和记录modCount,然后返回新插入的节点

下面分解“添加第一个数据”的步骤:

  第一步:初始化后LinkedList实例的情况:

  

第二步:初始化一个预添加的Entry实例(newEntry)。

  Entry newEntry = newEntry(e, entry, entry.previous);

  

第三步:调整新加入节点和头结点(header)的前后指针。

newEntry.previous.next = newEntry;

newEntry.previous即header,newEntry.previous.next即header的next指向newEntry实例。在上图中应该是“4号线”指向newEntry。

newEntry.next.previous = newEntry;

newEntry.next即header,newEntry.next.previous即header的previous指向newEntry实例。在上图中应该是“3号线”指向newEntry。

调整后如下图所示:

图——加入第一个节点后LinkedList示意图

下面分解“添加第二个数据”的步骤:

第一步:新建节点。

图——添加第二个节点

添加后续数据情况和上述一致,LinkedList实例是没有容量限制的

总结,addBefore(E e,Entry<E> entry)实现在entry之前插入由e构造的新节点。而add(E e)实现在header节点之前插入由e构造的新节点。为了便于理解,下面给出插入节点的示意图。

public void addFirst(E e) {
     addBefore(e, header.next);
 }

 public void addLast(E e) {
     addBefore(e, header);
 }

看上面的示意图,结合addBefore(E e,Entry<E> entry)方法,很容易理解addFrist(E e)只需实现在header元素的下一个元素之前插入,即示意图中的一号之前。addLast(E e)只需在实现在header节点前(因为是循环链表,所以header的前一个节点就是链表的最后一个节点)插入节点(插入后在2号节点之后)。

7.清除clear()方法

  

public void clear() {
    Entry<E> e = header.next;
    // e可以理解为一个移动的“指针”,因为是循环链表,所以回到header的时候说明已经没有节点了
     while (e != header) {
       // 保留e的下一个节点的引用
        Entry<E> next = e.next;
        // 解除节点e对前后节点的引用
        e.next = e.previous = null;
        // 将节点e的内容置空
        e.element = null;
        // 将e移动到下一个节点
        e = next;
 }
    // 将header构造成一个循环链表,同构造方法构造一个空的LinkedList
    header.next = header.previous = header;
    // 修改size
    size = 0;
    modCount++;
}

8.数据包含contains(Object)

  

public boolean contains(Object o) {
     return indexOf(o) != -1;
 }
 // 从前向后查找,返回“值为对象(o)的节点对应的索引”  不存在就返回-1 
 public int indexOf(Object o) {
      int index = 0;
      if (o==null) {
          for (Entry e = header.next; e != header; e = e.next) {
              if (e.element==null)
                  return index;
              index++;
         }
      } else {
         for (Entry e = header.next; e != header; e = e.next) {
             if (o.equals(e.element))
                 return index;
             index++;
        }
    }
     return -1;
 }

indexOf(Object o)判断o链表中是否存在节点的element和o相等,若相等则返回该节点在链表中的索引位置,若不存在则放回-1

contains(Object o)方法通过判断indexOf(Object o)方法返回的值是否是-1来判断链表中是否包含对象o。

9.删除数据remove()

几个remove方法最终都是调用了一个私有方法:remove(Entry<E> e),只是其他简单逻辑上的区别。下面分析remove(Entry<E> e)方法

private E remove(Entry<E> e) {
    if (e == header)
        throw new NoSuchElementException();
    // 保留将被移除的节点e的内容
    E result = e.element;
   // 将前一节点的next引用赋值为e的下一节点
    e.previous.next = e.next;
   // 将e的下一节点的previous赋值为e的上一节点
    e.next.previous = e.previous;
   // 上面两条语句的执行已经导致了无法在链表中访问到e节点,而下面解除了e节点对前后节点的引用
   e.next = e.previous = null;
  // 将被移除的节点的内容设为null
  e.element = null;
  // 修改size大小
  size--;
  modCount++;
  // 返回移除节点e的内容
  return result;
}

由于删除了某一节点因此调整相应节点的前后指针信息,如下:

e.previous.next = e.next;//预删除节点的前一节点的后指针指向预删除节点的后一个节点。 

e.next.previous = e.previous;//预删除节点的后一节点的前指针指向预删除节点的前一个节点。

10.清空预删除节点:

e.next = e.previous = null;

e.element = null;

交给gc完成资源回收,删除操作结束。

与ArrayList比较而言,LinkedList的删除动作不需要“移动”很多数据,从而效率更高。

11.数据获取get

  Get(int)方法的实现在remove(int)中已经涉及过了。首先判断位置信息是否合法(大于等于0,小于当前LinkedList实例的Size),然后遍历到具体位置,获得节点的业务数据(element)并返回。

注意:为了提高效率,需要根据获取的位置判断是从头还是从尾开始遍历。

  

// 获取双向链表中指定位置的节点    
    private Entry<E> entry(int index) {    
        if (index < 0 || index >= size)    
            throw new IndexOutOfBoundsException("Index: "+index+    
                                                ", Size: "+size);    
        Entry<E> e = header;    
        // 获取index处的节点。    
        // 若index < 双向链表长度的1/2,则从前先后查找;    
        // 否则,从后向前查找。    
        if (index < (size >> 1)) {    
            for (int i = 0; i <= index; i++)    
                e = e.next;    
        } else {    
            for (int i = size; i > index; i--)    
                e = e.previous;    
        }    
        return e;    

注意细节:位运算与直接做除法的区别。先将index与长度size的一半比较,如果index<size/2,就只从位置0往后遍历到位置index处,而如果index>size/2,就只从位置size往前遍历到位置index处。这样可以减少一部分不必要的遍历

12.数据复制clone(0和toArray()

  

public Object clone() {
    LinkedList<E> clone = null;
    try {
        clone = (LinkedList<E>) super.clone();
    } catch (CloneNotSupportedException e) {
        throw new InternalError();
   }
    clone.header = new Entry<E>(null, null, null);
    clone.header.next = clone.header.previous = clone.header;
    clone.size = 0;
    clone.modCount = 0;
    for (Entry<E> e = header.next; e != header; e = e.next)
       clone.add(e.element);
    return clone;
}

调用父类的clone()方法初始化对象链表clone,将clone构造成一个空的双向循环链表,之后将header的下一个节点开始将逐个节点添加到clone中。最后返回克隆的clone对象

  toArray()

  

public Object[] toArray() {
    Object[] result = new Object[size];
    int i = 0;
    for (Entry<E> e = header.next; e != header; e = e.next)
        result[i++] = e.element;
    return result;
}

创建大小和LinkedList相等的数组result,遍历链表,将每个节点的元素element复制到数组中,返回数组。

toArray(T[] a)

  

public <T> T[] toArray(T[] a) {
    if (a.length < size)
        a = (T[])java.lang.reflect.Array.newInstance(
                               a.getClass().getComponentType(), size);
    int i = 0;
    Object[] result = a;
    for (Entry<E> e = header.next; e != header; e = e.next)
        result[i++] = e.element;
    if (a.length > size)
        a[size] = null;
    return a;
}

先判断出入的数组a的大小是否足够,若大小不够则拓展。这里用到了发射的方法,重新实例化了一个大小为size的数组。之后将数组a赋值给数组result,遍历链表向result中添加的元素。最后判断数组a的长度是否大于size,若大于则将size位置的内容设置为null。返回a

从代码中可以看出,数组a的length小于等于size时,a中所有元素被覆盖,被拓展来的空间存储的内容都是null;若数组a的length的length大于size,则0至size-1位置的内容被覆盖,size位置的元素被设置为null,size之后的元素不变。

    为什么不直接对数组a进行操作,要将a赋值给result数组之后对result数组进行操作?

13.遍历数据 Iterator

LinkedList的Iterator

    除了Entry,LinkedList还有一个内部类:ListItr。

    ListItr实现了ListIterator接口,可知它是一个迭代器,通过它可以遍历修改LinkedList。

    在LinkedList中提供了获取ListItr对象的方法:listIterator(int index)。

  

public ListIterator<E> listIterator(int index) {
2     return new ListItr(index);
3 }

该方法只是简单的返回了一个ListItr对象。

    LinkedList中还有通过集成获得的listIterator()方法,该方法只是调用了listIterator(int index)并且传入0。

二、ListItr

  下面详细分析ListItr。

  

private class ListItr implements ListIterator<E> {
// 最近一次返回的节点,也是当前持有的节点
    private Entry<E> lastReturned = header;
    // 对下一个元素的引用
    private Entry<E> next;
    // 下一个节点的index
    private int nextIndex;
    private int expectedModCount = modCount;
    // 构造方法,接收一个index参数,返回一个ListItr对象
    ListItr(int index) {
        // 如果index小于0或大于size,抛出IndexOutOfBoundsException异常
        if (index < 0 || index > size)
        throw new IndexOutOfBoundsException("Index: "+index+
                            ", Size: "+size);
        // 判断遍历方向
        if (index < (size >> 1)) {
        // next赋值为第一个节点
        next = header.next;
        // 获取指定位置的节点
        for (nextIndex=0; nextIndex<index; nextIndex++)
            next = next.next;
        } else {
// else中的处理和if块中的处理一致,只是遍历方向不同
        next = header;
        for (nextIndex=size; nextIndex>index; nextIndex--)
            next = next.previous;
       }
   }
    // 根据nextIndex是否等于size判断时候还有下一个节点(也可以理解为是否遍历完了LinkedList)
    public boolean hasNext() {
        return nextIndex != size;
   }
    // 获取下一个元素
    public E next() {
       checkForComodification();
        // 如果nextIndex==size,则已经遍历完链表,即没有下一个节点了(实际上是有的,因为是循环链表,任何一个节点都会有上一个和下一个节点,这里的没有下一个节点只是说所有节点都已经遍历完了)
        if (nextIndex == size)
        throw new NoSuchElementException();
        // 设置最近一次返回的节点为next节点
        lastReturned = next;
        // 将next“向后移动一位”
        next = next.next;
        // index计数加1
        nextIndex++;
        // 返回lastReturned的元素
        return lastReturned.element;
   }

    public boolean hasPrevious() {
        return nextIndex != 0;
   }
    // 返回上一个节点,和next()方法相似
    public E previous() {
        if (nextIndex == 0)
        throw new NoSuchElementException();

        lastReturned = next = next.previous;
        nextIndex--;
       checkForComodification();
        return lastReturned.element;
   }

    public int nextIndex() {
        return nextIndex;
   }

    public int previousIndex() {
        return nextIndex-1;
   }
    // 移除当前Iterator持有的节点
    public void remove() {
           checkForComodification();
            Entry<E> lastNext = lastReturned.next;
            try {
                LinkedList.this.remove(lastReturned);
            } catch (NoSuchElementException e) {
                throw new IllegalStateException();
           }
        if (next==lastReturned)
                next = lastNext;
            else
        nextIndex--;
        lastReturned = header;
        expectedModCount++;
   }
    // 修改当前节点的内容
    public void set(E e) {
        if (lastReturned == header)
        throw new IllegalStateException();
       checkForComodification();
        lastReturned.element = e;
   }
    // 在当前持有节点后面插入新节点
    public void add(E e) {
       checkForComodification();
        // 将最近一次返回节点修改为header
        lastReturned = header;
       addBefore(e, next);
        nextIndex++;
        expectedModCount++;
   }
    // 判断expectedModCount和modCount是否一致,以确保通过ListItr的修改操作正确的反映在LinkedList中
    final void checkForComodification() {
        if (modCount != expectedModCount)
        throw new ConcurrentModificationException();
   }
}

下面是一个ListItr的使用实例。

  

LinkedList<String> list = new LinkedList<String>();
        list.add("First");
        list.add("Second");
        list.add("Thrid");
       System.out.println(list);
        ListIterator<String> itr = list.listIterator();
        while (itr.hasNext()) {
           System.out.println(itr.next());
       }
        try {
            System.out.println(itr.next());// throw Exception
        } catch (Exception e) {
            // TODO: handle exception
       }
        itr = list.listIterator();
       System.out.println(list);
       System.out.println(itr.next());
        itr.add("new node1");
       System.out.println(list);
        itr.add("new node2");
       System.out.println(list);
       System.out.println(itr.next());
        itr.set("modify node");
       System.out.println(list);
       itr.remove();
        System.out.println(list);
结果:
[First, Second, Thrid]
First
Second
Thrid
[First, Second, Thrid]
First
[First, new node1, Second, Thrid]
[First, new node1, new node2, Second, Thrid]
Second
[First, new node1, new node2, modify node, Thrid]
[First, new node1, new node2, Thrid]

LinkedList还有一个提供Iterator的方法:descendingIterator()。该方法返回一个DescendingIterator对象。DescendingIterator是LinkedList的一个内部类

public Iterator<E> descendingIterator() {
2    return new DescendingIterator();
3 }

下面分析详细分析DescendingIterator类。

private class DescendingIterator implements Iterator {
   // 获取ListItr对象
final ListItr itr = new ListItr(size());
// hasNext其实是调用了itr的hasPrevious方法
   public boolean hasNext() {
       return itr.hasPrevious();
   }
// next()其实是调用了itr的previous方法
   public E next() {
       return itr.previous();
   }
   public void remove() {
       itr.remove();
   }
}

从类名和上面的代码可以看出这是一个反向的Iterator,代码很简单,都是调用的ListItr类中的方法

原文地址:https://www.cnblogs.com/hanxue112253/p/8484121.html