向量无穷范数为什么是分量绝对值最大者?

  一直以来都不理解向量无穷范数如何从p范数得来,最近正看到极限,借此推导一遍。

1- p-范数

  若 $x=left[x_{1}, x_{2}, cdots, x_{n} ight]^{T}$,那么 $$| x|_{p}=(|x_{1}|^{p}+|x_{2}|^{p}+cdots+|x_{n}|^{p})^{frac{1}{p}}$$

  当 $p$ 取 $1, 2, infty$ 时, 分别得到:

    $1$-范数:  $|x|_{1}=|x_{1}|+|x_{2}|+cdots+|x_{n}|$

    $2$-范数:  $|x|_{2}=(|x_{1}|^{2}+|x_{2}|^{2}+cdots+|x_{n}|^{2})^{frac{1}{2}}$

    $infty$-范数:  $|x|_{infty}=max(|x_{1}|, |x_{2}|, cdots, |x_{n}|)$


2- $infty$-范数的推导

  证明

  由定义$| x|_{p}=(|x_{1}|^{p}+|x_{2}|^{p}+cdots+|x_{n}|^{p})^{frac{1}{p}}$,记 $x_{max}=max(|x_{1}|, |x_{2}|, cdots, |x_{n}|)$

[egin{eqnarray}limlimits_{p oinfty}|x|_{p}&=&limlimits_{p oinfty}x_{max}cdotBig(ig(frac{|x_{1}|}{x_{max}}ig)^{p}+ig(frac{|x_{2}|}{x_{max}}ig)^{p}+cdots+ig(frac{|x_{n}|}{x_{max}}ig)^{p}Big)^{frac{1}{p}} onumber\&=&x_{max}cdotlimlimits_{p oinfty}Big(ig(frac{|x_{1}|}{x_{max}}ig)^{p}+ig(frac{|x_{2}|}{x_{max}}ig)^{p}+cdots+ig(frac{|x_{n}|}{x_{max}}ig)^{p}Big)^{frac{1}{p}} onumberend{eqnarray}]

  因 $1leqsumlimits_{i}ig(frac{|x_{i}|}{x_{max}}ig)^{p}leq n$,故由 $limlimits_{n oinfty}n^{frac{1}{n}}=1$ 及 夹逼原理,有$$limlimits_{p oinfty}Big(ig(frac{|x_{1}|}{x_{max}}ig)^{p}+ig(frac{|x_{2}|}{x_{max}}ig)^{p}+cdots+ig(frac{|x_{n}|}{x_{max}}ig)^{p}Big)^{frac{1}{p}}=1$$

  从而 $limlimits_{p oinfty}|x|_{p}=x_{max}$.

  

原文地址:https://www.cnblogs.com/freyr/p/4533048.html