c++ 内存管理

  c++中给对象分配内存常见有三种方法:

  • 使用c++ 库函数 std::allocator  (c++ library);
  • 使用new,new[] 表达式,::operator new() 操作符,(c++ primitives);
  • c 函数 malloc/free (CRT);

测试代码如下:

 1 #include<iostream>
 2 #include <stdlib.h>
 3 #include<complex>
 4 #include <memory>    //内含 std::allocator
 5 #include <extpool_allocator.h> // __pool_alloc
 6 
 7 using namespace std;
 8 
 9 void test()
10 {
11     void* p1 = malloc(512); //512bytes
12     free(p1);
13 
14     complex<int>* p2 = new complex<int>; //one object
15     delete p2;
16 
17     void* p3 = ::operator new(512);// 512bytes
18     ::operator delete(p3);
19 
20 #ifdef __GNUC__
21     //以下函数都是non-static,一定要通过object调用,分配7个int的内存
22     void* p4 = allocator<int>().allocate(7);//allocator<int>()创建临时对象
23     allocator<int>().deallocate((int*)p4,7);
24 
25     //void* p5 = alloc::allocate(512);  //2.9
26     //alloc::deallocate(p5,512);
27 
28     void* p6 = __gnu_cxx::__pool_alloc<int>().allocate(9); // 对应上面的 gnc2.9;
29     __gnu_cxx::__pool_alloc<int>().deallocate((int*)p6,9);
30 #endif // __GNUC__
31 
32 #ifdef _MSC_VER_
33     int* p6 = allocator<int>().allocate(3, (int*)0);
34     allocator<int>().deallocate(p6,3);
35 #endif // _MSC_VER_
36     return;
37 }
View Code

一、new

使用new表达式,编译器将其转化为先调用 operator new 运算符,然后调用构造函数。 new过程是先分配内存,然后调用构造函数;delete时,先调用析构函数,然后释放内存。

image image
只有编译器可以直接调用构造函数,示例代码如下:
class A
{
public:
    int id;

    A() : id(0)
    {
        cout << "default ctor.this=" << this << " id=" << id << endl;
    }
    A(int i):id(i)
    {
        cout<< "ctor. this = " << this <<" id=" <<id <<endl;
    }
    ~A()
    {
        cout<<"dtor.this = "<<this <<endl;
    }
};
void testCt()
{
    string* pstr = new string;
    cout << "str = " << *pstr <<endl;

    // pstr->string::string("123"); //'class std::basic_string<char>' has no member named 'string'|
    pstr->~string();
    cout<<"str = " <<endl;

    A* pA = new A(1);
    cout<< "pA->id = "<< pA->id<<endl;

    // pA->A::A(3);//error: cannot call constructor 'A::A' directly|

    // A::A(5); //error: cannot call constructor 'A::A' directly [-fpermissive]|

    cout<< "pA->id = "<<pA->id<<endl;
    delete pA;
    A* pA2;
    new(pA2)A(5);
    cout<< "pA2->id = "<<pA2->id<<endl;
    delete pA2;
}
View Code

image

二、Array new, Replacement new 

image 
  定义数组A* p = new A[3];时,会申请分配内存,并调用三次默认构造函数;
  当使用 delete[] p;时,会调用三次析构函数,并释放内存,而使用delete p,则数组所占内存仍然会释放掉,但只会调用一次析构函数,而如果析构函数内有释放内存的操作,则使用delete p,造成内存泄漏。
测试代码如下:
 1 void testArrNew()
 2 {
 3     A* buf = new A[3]; //默认构造函数调用3次 调用顺序 0-1-2
 4     //A必须有默认构造函数 new A[3]调用的是默认构造函数
 5 
 6     A* tmp = buf;//记录A数组的起点位置
 7 
 8     cout << "buf=" << buf << " tmp=" << tmp << endl;
 9 
10     for(int i = 0; i < 3; i++)
11     {
12         new(tmp++)A(i); //placement new;在分配好的内存上,赋值
13     }
14 
15     cout << "buf=" << buf << " tmp=" << tmp << endl;
16 
17     //delete[] buf;
18     delete buf;
19 }
View Code

执行结果如下:

image image

三、 placement new

先看一下placement new

char* buf = new char[sizeof(A) * 3];//申请内存

A* pc = new(buf)A();//在申请好的buf的内存,在buf上赋值

代码中 new(buf)A(); 就是placement new.

编译器会将上述代码转化为

A * pc;
try {
    void* men = operator new(sizeof(A), buf); //申请内存
    pc = static_cast<A*>(mem);//转换
    pc->A::A();//构造函数
}
catch (std::bad_alloc){
  
}

四、重载 operator new, operator new[], operator delete, operator delete[]

接管全局new,delete 函数,重载使用自己的操作符。

测试代码如下:

  新建class Foo类

 1 class Foo
 2 {
 3 private:
 4     int _id;
 5     long _data;
 6     string _str;
 7 
 8 public:
 9     Foo():_id(0)
10     {
11         cout << "default ctor.this=" << this << " id=" << _id << endl;
12     }
13     Foo(int a):_id(a)
14     {
15         cout << "ctor.this=" << this << " id=" << _id << endl;
16     }
17 
18     virtual
19     ~Foo()
20     {
21         cout << "dtor.this=" << this << " id=" << _id << endl;
22     }
23 
24     //申请内存的函数必须是静态的 调用这个函数时一般都是正在创建这个对象
25     //所以当调用时,这个对象还不存在,需要声明成静态
26     static void* operator new(size_t size);
27     static void  operator delete(void* pdead, size_t size);
28     static void* operator new[](size_t size);
29     static void  operator delete[](void* pdead, size_t size);
30 };
31 
32 void* Foo::operator new(size_t size)
33 {
34     Foo* p = (Foo*)malloc(size);
35     cout <<"operator new().size="<< size << "       return=" << p <<endl;
36     return p; //p 为内存起始点
37 }
38 
39 void Foo::operator delete(void* pdead, size_t size)//pdead 删除点,和上面的p为同一个位置,size 为将要删除的内存大小
40 {
41     cout <<"operator delete.pdead=" << pdead << "       size=" << size <<endl;
42     cout << endl;
43     free(pdead);
44 }
45 
46 void* Foo::operator new[](size_t size)
47 {
48     Foo* p = (Foo*)malloc(size);
49     cout <<"operator new[].size="<< size <<"     return=" << p << endl;
50     return p;
51 }
52 
53 void Foo::operator delete[](void* pdead, size_t size)
54 {
55     cout<< "operator delete[].pdead=" << pdead << "     size="<< size <<endl;
56     cout << endl;
57     free(pdead);
58 }
class Foo

  测试函数

1 void testoperatornew()
2 {
3     cout << "sizeof(Foo)="<<sizeof(Foo) << endl;
4     Foo* p = new Foo(7);
5     delete p;
6 
7     Foo* pArray = new Foo[5];
8     delete [] pArray;
9 }
View Code

  执行结果

image

重载new(),delete()

    可以重载class member operator new(), 其中第一个参数必须是size_t,其余参数以new所指定的placement arguments 为初值,出现于new() 括号内的就是所谓的placems arguments.

     也可以重载class member operator delete(),但他们不会被delete调用,只有当new所调用的ctor抛出异常,才会调用重载版的operator delete(),主要用来释放未完全创建成功的object所占有的内存。

示例代码

 1 class Foo2
 2 {
 3 private:
 4     int _id;
 5 
 6 public:
 7     Foo2()
 8     {
 9         cout << " Foo2()::Foo2() "  << endl;
10     }
11     Foo2(int a)
12     {
13         cout << "Foo2()::Foo2(int) "<< endl;
14         throw Bad();
15     }
16 
17 
18     void* operator new(size_t size)
19     {
20         cout << "operator new(size_t size),  size="<< size <<endl;
21         return malloc(size);
22     }
23 
24     // 标准库提供的placeent new()的重载形式
25     void* operator new(size_t size, void* star)
26     {
27         cout << "operator new(size_t size),  size="<< size<< " star = " << star <<endl;
28         return malloc(size);
29     }
30     // 模拟标准库的形式,只传回pointer
31     void* operator new(size_t size, long extra)
32     {
33         cout << "operator new(size_t size, long extra),  size="<< size <<" extra = " << extra<<endl;
34         return malloc(size+extra);
35     }
36 
37     void* operator new(size_t size, long extra,char init)
38     {
39         cout << "operator new(size_t size, long extra,char init),  size="<< size <<" extra = " << extra
40              <<" init = " << init<<endl;
41         return malloc(size+extra);
42     }
43     /* 又一个 ,但故意写错第一参数类型
44       void* operator new(long extra, char init) //error: 'operator new' takes type 'size_t' ('unsigned int')
45     {
46         return malloc(extra);                   //as first parameter [-fpermissive]|
47     } */
48 
49     void operator delete(void*,long)
50     {
51         cout<<" operator delete(void*,size_t) " <<endl;
52     }
53     void operator delete(void*,long,char)
54     {
55         cout<<" operator delete(void*,long,char) " <<endl;
56     }
57 };
58 
59 void testFoo2()
60 {
61     Foo2 start;
62     Foo2* p1= new Foo2;
63     Foo2* p2= new(&start) Foo2;
64     Foo2* p3= new(100) Foo2;
65     Foo2* p4= new(100,'A') Foo2;
66     Foo2* p5= new(100) Foo2(1);
67     Foo2* p6= new(100,'A') Foo2(1);
68     Foo2* p7= new(&start) Foo2(1);
69     Foo2* p8= new Foo2(1);
70 }
View Code

运行结果

image五、内存池

内存池的优点

1.减少malloc的使用,提高运行效率

2.减少内存碎片,减少cookie

构造简单的内存池,示例代码如下

  1 #include<iostream>
  2 #include <stdlib.h>
  3 #include<complex>
  4 #include <memory>    //内含 std::allocator
  5 #include <extpool_allocator.h> // __pool_alloc
  6 
  7 using namespace std;
  8 
  9 class Screen
 10 {
 11 public:
 12     Screen(int x): i(x)  { }
 13     int get() {    return i; }
 14 /************************重载 ××××*************/
 15     void* operator new(size_t);
 16     void operator delete(void*, size_t);
 17 /* **********************重载 ××××************ ***/
 18 private:
 19     Screen* next;//4bit
 20     static Screen* freeStore;
 21     static const int screenChunk;//想要创建多少组
 22 
 23 private:
 24     int i; //4bit
 25 };
 26 
 27 Screen* Screen::freeStore = 0;
 28 const int Screen::screenChunk = 24;
 29 
 30 /************************重载×××××××××××××××××××××××××*************/
 31 
 32 void* Screen::operator new(size_t size)
 33 {
 34     Screen* p;
 35     if(!freeStore)
 36     {
 37         //linked list是空的,所以申请一大块内存
 38         size_t chunk = screenChunk * size; //192 Screen的内存大小为8共24组  24 * 8 = 192
 39         freeStore = p =
 40                 reinterpret_cast<Screen*>(new char[chunk]);
 41         cout << "startPisotion: " << p << endl;
 42 
 43         //将一大块内存分割成片段,当做linked list串接起来
 44         for(; p != &freeStore[screenChunk-1]; ++p)
 45         {
 46             p->next = p+1;
 47         }
 48         p->next = 0;
 49     }
 50     p = freeStore;
 51     freeStore = freeStore->next;
 52 
 53     return p;
 54 }
 55 
 56 void Screen::operator delete(void* p, size_t)
 57 {
 58     //将delete object插回 free list前端
 59     (static_cast<Screen*>(p)) -> next = freeStore;
 60     freeStore = static_cast<Screen*>(p);
 61 }
 62 /************************重载×××××××××××××××××××××××××**************/
 63 void test_per()
 64 {
 65     cout << "sizeof(int)"<< sizeof(int*) << endl;
 66     cout << "sizeof(Screen*)"<< sizeof(Screen*) << endl;
 67     cout << "sizeof(Screen)"<< sizeof(Screen) << endl;
 68 
 69     size_t const N = 10;
 70 
 71     Screen* p[N];
 72 
 73     cout << "overload operator new" << endl;
 74     for(int i=0; i<N; i++)
 75     {
 76         p[i] = new Screen(i);
 77     }
 78 
 79     for(int i = 0; i<10; i++)
 80     {
 81         cout << p[i] << endl;//输出每个Screen的内存起点
 82     }
 83 
 84     for(int i=0; i<N; i++)
 85     {
 86         delete p[i];
 87     }
 88 
 89     cout << "glob operator new" << endl;
 90 
 91     Screen* q[N];
 92 
 93     for(int i=0; i<N; i++)
 94     {
 95         q[i] = ::new Screen(i);
 96     }
 97 
 98     for(int i = 0; i<10; i++)
 99     {
100         cout << q[i] << endl;
101     }
102 
103     for(int i=0; i<N; i++)
104     {
105         ::delete q[i];
106     }
107 }
108 
109 int main()
110 {
111     test_per();
112     return 0;
113 }
View Code

测试结果

image image

  左边是重载了member operator new/delete 的结果,右边是没有使用重载而是使用global operator new/delete 的结果。class Screen 大小为8字节,使用重载的函数数组内相邻元素地址相隔8个字节,减少了使用malloc时的cookie;而不使用重载函数,相隔48个字节。

  上述例子中,类中多出了一个指针Screen* next;//4bit ,增加了内存开销,可以采用union减少内存开销,代码如下: 

  1 //ref. Effective C++ 2e, item10
  2 //per-class allocator
  3 
  4 class Airplane     // customized memory management
  5 {
  6 private:
  7     struct AirplaneRep
  8     {
  9         unsigned long miles;
 10         char type;
 11     };
 12 private:
 13     union
 14     {
 15         AirplaneRep rep;  //此针对 used object
 16         Airplane* next;   //此针对 free list
 17     };
 18 public:
 19     unsigned long getMiles()
 20     {
 21         return rep.miles;
 22     }
 23     char getType()
 24     {
 25         return rep.type;
 26     }
 27     void set(unsigned long m, char t)
 28     {
 29         rep.miles = m;
 30         rep.type = t;
 31     }
 32     void* getNext()
 33     {
 34         return next;
 35     }
 36 public:
 37     static void* operator new(size_t size);
 38     static void  operator delete(void* deadObject, size_t size);
 39 private:
 40     static const int BLOCK_SIZE;
 41     static Airplane* headOfFreeList;
 42 };
 43 
 44 Airplane* Airplane::headOfFreeList;
 45 const int Airplane::BLOCK_SIZE = 128;
 46 
 47 void* Airplane::operator new(size_t size)
 48 {
 49     //如果大小错误,转交给 ::operator new()
 50     if (size != sizeof(Airplane))
 51         return ::operator new(size);
 52 
 53     Airplane* p = headOfFreeList;
 54 
 55     //如果 p 有效,就把list头部移往下一个元素
 56     if (p)
 57         headOfFreeList = p->next;
 58     else
 59     {
 60         //free list 已空。配置一块够大内存,
 61         //令足够容纳 BLOCK_SIZE 个 Airplanes
 62         Airplane* newBlock = static_cast<Airplane*>
 63                              (::operator new(BLOCK_SIZE * sizeof(Airplane)));
 64         //组成一个新的 free list:将小区块串在一起,但跳过
 65         //#0 元素,因为要将它传回给呼叫者。
 66         for (int i = 1; i < BLOCK_SIZE-1; ++i)
 67             newBlock[i].next = &newBlock[i+1];
 68         newBlock[BLOCK_SIZE-1].next = 0; //以null结束
 69 
 70         // 将 p 设至头部,将 headOfFreeList 设至
 71         // 下一个可被运用的小区块。
 72         p = newBlock;
 73         headOfFreeList = &newBlock[1];
 74     }
 75     return p;
 76 }
 77 
 78 // operator delete 接获一块内存。
 79 // 如果它的大小正确,就把它加到 free list 的前端
 80 void Airplane::operator delete(void* deadObject,
 81                                size_t size)
 82 {
 83     if (deadObject == 0) return;
 84     if (size != sizeof(Airplane))
 85     {
 86         ::operator delete(deadObject);
 87         return;
 88     }
 89 
 90     Airplane *carcass =
 91         static_cast<Airplane*>(deadObject);
 92 
 93     carcass->next = headOfFreeList;
 94     headOfFreeList = carcass;
 95 }
 96 
 97 //-------------
 98 void test_per_class_allocator_2()
 99 {
100     cout << "
test_per_class_allocator_2().......... 
";
101 
102     cout << sizeof(Airplane) << endl;    //8
103 
104     size_t const N = 20;
105     Airplane* p[N];
106 
107     for (int i=0; i< N; ++i)
108         p[i] = new Airplane;
109 
110 
111     //随机测试 object 正常否
112     p[1]->set(256,'A');
113     p[5]->set(1024,'B');
114     p[9]->set(256000,'C');
115 
116     unsigned char* b = (unsigned char*)p[1];
117     printf("二进制p[1] low: %02X%02X%02X%02X", b[0], b[1], b[2], b[3]);
118     b=b+4;
119     printf(" high: %02X%02X%02X%02X

", b[0], b[1], b[2], b[3]);
120     cout << p[1] << ' ' << p[1]->getType() << ' ' << p[1]->getMiles()<< "		" <<(void*)256 << endl;
121     cout << p[5] << ' ' << p[5]->getType() << ' ' << p[5]->getMiles()<< "		" <<(void*)1024 << endl;
122     cout << p[9] << ' ' << p[9]->getType() << ' ' << p[9]->getMiles()<< '	' <<(void*)256000 << endl<<endl;
123 
124     cout<<"--地址---type---miles--------Next-------------二进制----------"<<endl;
125     //输出前 10 个 pointers, 用以比较其间隔
126     for (int i=0; i< 10; ++i)
127     {
128         cout << p[i]<< "  " << p[i]->getType() << "  " ;
129         cout.width(8);                  // 设置域宽为8
130         cout<< p[i]->getMiles()<<"	Next =";
131         cout.width(8);                  // 设置域宽为8
132         cout<<p[i]->getNext();
133 
134         b = (unsigned char*)p[i];
135         printf("	p[%d] L:%02X%02X%02X%02X",i, b[3], b[2], b[1], b[0]);
136         b=b+4;
137         printf(" H:%02X%02X%02X%02X
", b[3], b[2], b[1], b[0]);
138     }
139 
140 
141     for (int i=0; i< N; ++i)
142         delete p[i];
143 
144     cout << "
global new test_per_class_allocator_2().......... 
";
145     cout <<endl;
146 
147     for (int i=0; i< N; ++i)
148         p[i] = ::new Airplane;
149 
150     //随机测试 object 正常否
151     p[1]->set(256,'A');
152     p[5]->set(1024,'B');
153     p[9]->set(256000,'C');
154     cout << p[1] << ' ' << p[1]->getType() << ' ' << p[1]->getMiles()<< ' ' <<(void*)256 << endl;
155     cout << p[5] << ' ' << p[5]->getType() << ' ' << p[5]->getMiles()<< ' ' <<(void*)1024 << endl;
156     cout << p[9] << ' ' << p[9]->getType() << ' ' << p[9]->getMiles()<< ' ' <<(void*)256000 << endl;
157     cout <<endl;
158     //输出前 10 个 pointers, 用以比较其间隔
159     for (int i=0; i< 10; ++i)
160     {
161         cout << p[i]<< ' ' << p[i]->getType() << ' ' ;
162         cout.width(8);                  // 设置域宽为8
163         cout<< p[i]->getMiles()<<"	 Next =	"<<p[i]->getNext()<< endl;
164     }
165     for (int i=0; i< N; ++i)
166         ::delete p[i];
167 }
View Code

  测试结果如下

test_per_class_allocator_2

 

六、static allocate

上节分配内存的方法,每个类中都要重载new,delete; 因此将该部分提取出来,封装为一个类allocate; 将应用类的实现与内存分配细节分离开来

测试代码

  1 #include<iostream>
  2 #include <stdlib.h>
  3 #include<complex>
  4 //#include <memory>    //内含 std::allocator
  5 //#include <extpool_allocator.h> // __pool_alloc
  6 
  7 using namespace  std ;
  8 
  9 class myAllocator
 10 {
 11 private:
 12     struct obj
 13     {
 14         struct obj* next;
 15     };
 16 
 17 public:
 18     void* allocate(size_t);
 19     void  deallocate(void*, size_t);
 20 private:
 21     obj* freeStore = nullptr;
 22     const int CHUNK = 5; // 便于观察,设为5
 23 };
 24 
 25 void myAllocator::deallocate(void* p, size_t size)
 26 {
 27     cout << "myAllocator::deallocate" << "size: " << size <<endl;
 28     ((obj*)p)->next = freeStore;
 29     freeStore = (obj*)p;
 30 }
 31 
 32 void* myAllocator::allocate(size_t size)
 33 {
 34    // cout << "myAllocator::allocate" << "size: " << size <<endl;
 35     obj* p;
 36     if(!freeStore)
 37     {
 38         size_t chunk = CHUNK * size;
 39         freeStore = p = (obj*)malloc(chunk);
 40 
 41         for(int i=0; i<(CHUNK-1); ++i)
 42         {
 43             p->next = (obj*)((char*)p + size);
 44             p = p->next;
 45         }
 46 
 47         p->next = nullptr;
 48     }
 49     p= freeStore;
 50     freeStore = freeStore -> next;
 51 
 52     return p;
 53 }
 54 
 55 class Foo
 56 {
 57 public:
 58     long L;
 59     string str;
 60     static myAllocator myAlloc;
 61 public:
 62     Foo(long l): L(l)
 63     {
 64         //todo
 65     }
 66 
 67     static void* operator new(size_t size)
 68     {
 69         return myAlloc.allocate(size);
 70     }
 71 
 72     static void operator delete(void* pdead, size_t size)
 73     {
 74         return myAlloc.deallocate(pdead, size);
 75     }
 76 };
 77 myAllocator Foo::myAlloc;
 78 
 79 class Goo
 80 {
 81 public:
 82     complex<double> L;
 83     string str;
 84     static myAllocator myAlloc;
 85 public:
 86     Goo(const complex<double>& l): L(l)
 87     {
 88         //todo
 89     }
 90 
 91     static void* operator new(size_t size)
 92     {
 93         return myAlloc.allocate(size);
 94     }
 95 
 96     static void operator delete(void* pdead, size_t size)
 97     {
 98         return myAlloc.deallocate(pdead, size);
 99     }
100 };
101 myAllocator Goo::myAlloc;
102 
103 void test3()
104 {
105     size_t const N = 20;
106     Foo* p[N];
107 
108     cout << "overload operator new" << endl;
109     cout <<"sizeof(Foo) = "<< sizeof(Foo) << endl;
110 
111     for(int i=0; i<N; i++)
112     {
113         p[i] = new Foo(i);
114         cout<<p[i] << ' '<<p[i]->L<<endl;
115     }
116 
117     for(int i = 0; i<N; i++)
118     {
119         cout << p[i] << endl;
120     }
121 
122     for(int i=0; i<N; i++)
123     {
124         delete p[i];
125     }
126 
127     cout << "glob operator new" << endl;
128 
129     Foo* q[N];
130 
131     for(int i=0; i<N; i++)
132     {
133         q[i] = ::new Foo(i);
134     }
135 
136     for(int i = 0; i<N; i++)
137     {
138         cout << q[i] << endl;
139     }
140 
141     for(int i=0; i<N; i++)
142     {
143         ::delete q[i];
144     }
145 
146     Goo* pG[N];
147 
148     cout << "overload operator new" << endl;
149     cout <<"sizeof(Goo) = "<< sizeof(Goo) << endl;
150 
151     for(int i=0; i<N; i++)
152     {
153         pG[i] = new Goo(complex<double>(i,i));
154         cout<<pG[i] << ' '<<pG[i]->L<<endl;
155     }
156 
157     for(int i=0; i<N; i++)
158     {
159         delete pG[i];
160     }
161 }
162 
163 int main()
164 {
165     test3();
166     return 0;
167 }
View Code

执行结果

image image

myAllocator 中const int CHUNK = 5; (便于观察,设为5),块内每5个元素地址相差一个元素大小,块与块之间地址相差较大。

优化升级

上述示例代码中,使用myAllocator的格式是固定的,因此可以将其提取出来定义为宏。

代码如下:

 1 // DECLARE_POOL_ALLOC() --used in class definition
 2 #define DECLARE_POOL_ALLOC()
 3 public:
 4     void* operator new(size_t size){ myAlloc.allocate(size); }
 5     void operator delete(void* p){ myAlloc.deallocate(p, 0); } 
 6 protected:
 7     static myAllocator myAlloc;
 8 
 9 // IMPLEMENT_POOL_ALLOC() --used in class implemention file
10 #define IMPLEMENT_POOL_ALLOC(class_name)
11 myAllocator class_name::myAlloc;
12 
13 class Foo
14 {
15     DECLARE_POOL_ALLOC()
16 public:
17     long L;
18     string str;
19 public:
20     Foo(long l): L(l)
21     {
22         //todo
23     }
24 };
25 IMPLEMENT_POOL_ALLOC(Foo)
26 
27 class Goo
28 {
29     DECLARE_POOL_ALLOC()
30 public:
31     complex<double> L;
32     string str;
33 public:
34     Goo(const complex<double>& l): L(l)
35     {
36         //todo
37     }
38 };
39 IMPLEMENT_POOL_ALLOC(Goo)
View Code

七、何时重载operator new或operator delete

   用来检测运用上的错误。如果delete new的内存失败,会导致内存泄漏。如果在new所得内存多次delete会导致不确定行为。使用编译器提供的operator new和operator delete不能检测上述行为。如果operator new持有一个链表,其存储动态分配所得内存,operator delete则将内存从链表删除,这样就能检测上述错误用法。如果编程错误,可能在分配内存的之前区域或之后区域写入数据;这时可以自己定义operator new分配超额内存,在多出部分写上特定byte patterns(即签名,signature),operator delete检测签名是否更改,是否发生了overrun 或 underrun。

  为了强化效能。编译器所带的operator new和operator delete主要用于一般目的,它处理的内存请求有时很大,有时很小,它必须处理大数量短命对象的持续分配和归还。它们必须考虑碎片问题。定制版的operator new和operator delete通常在性能上胜过缺省版本,它们运行得比较快,需要的内存比较少。

  为了收集使用上的统计数据。在重载之前,首先要了解软件如何使用动态内存。分配区块如何分布?寿命如何?它们是FIFO先进先出还是LIFO后进先出,或随机分配和归还?软件在不同执行阶段有不同的分配归还形态吗?任何时刻使用的最大动态分配量是多少?自己定义的operator new和operator delete可以轻松收集到这些信息。

  为了增加分配和归还的速度。使用定制的针对特定类型对象的分配器,可以提高效率。例如,Boost提供的Pool程序库便是。如果在单线程程序中,你的编译器所带的内存管理具备线程安全,你可以写个不具备线程安全的分配器而大幅度改善速度。

  为了降低缺省内存管理器带来的空间额外开销。泛用型分配器往往(虽然并非总是)不只比定制型慢,还使用更多空间,因为它们常常在每一个分配区块上招引某些额外开销。针对小型对象开放的分配器,例如Boost库的Pool,本质上消除了这样的额外开销。

  为了弥补缺省分配器的非最佳对齐(suboptimal alignment)。X86体系结构上的double访问最快–如果它们是8-byte对齐。但是编译器自带的operator new并不保证分配double是8-byte对齐。

  为了将相关对象成簇集中。如果特定的某个数据结构往往被一起使用,我们希望在处理这些数据时将“内存页错误”(page faults)的频率降至最低,那么为此数据结构创建另一个heap就有意义,这样就可以将它们成簇集中到尽可能少的内存也上。

  为了获得非传统的行为。有时候我们需要做operator new和delete没做的事。例如,在归还内存时将其数据覆盖为0,以此增加应用程序的数据安全。

  

上述所有代码执行环境为GNU4.9.2

内容参考自:侯捷c++内存管理课程, Effective c++

原文地址:https://www.cnblogs.com/flysong/p/8167371.html