MySQL存储引擎比较

一、MySQL的体系结构

  为了适应各种不同的运行环境,MYSQL提供了多种不同的存储引擎(Storage Engine ),在应用程序开发这个层面上,开发者可以根据不同的需求选择适合的Storage Engine 方案,更为灵活的是,你可以根据每张表将要存储数据的特点,选择不同的Storage Engine,也就是说,在一个MYSQL数据库中,可以混合使用多种不同的Storage Engine。


  在 mysql 5.1 中,引入了新的插件式存储引擎体系结构,允许将存储引擎加载到正在运新的 mysql 服务器中。使用 mysql 插件式存储引擎体系结构,允许数据库专业人员或者设计库表的软件开发人员为特定的应用需求选择专门的存储引擎,完全不需要管理任何特殊的应用编码要求,也无需考虑所有的底层实施细节。因此,尽管不同的存储引擎具有不同的能力,应用程序是与之分离的。此外,使用者可以在服务器、数据库和表格三个层级中存储引擎,提供了极大的灵活性。

首先小瞥一下MySQL的体系结构,在最高抽象层度下,可以用Garlan & Shaw的分层结构体系来表示(左)


 
其中应用层为所有RDBMS用户提供用户接口,逻辑层包括了所有核心功能的实现,物理层则负责将数据存储在硬件设备上。

图中右侧更为具体的描述了逻辑层的组成,查询处理子系统、事务管理子系统、恢复管理子系统和存储管理子系统共同组成了MySQL的逻辑层。相信Storage Engine的位置是在Storage Management处,既Storage Engine属于Storage Management子系统的一部分

为了让思路更清晰一些,下面给出一幅比较全面的体系结构图(或更确切的说是流程图,只是忽略了反馈)
 
上面三幅图来自于一篇非官方(不保证百分百的正确)的MySQL体系结构的报告,与《High Performance MySQL》一书中给出的MySQL大体结构(下图,基本对应于Logic Layer,从第一幅图右侧可以看出MySQL logic layer同样遵从分层体系结构)还是比较吻合的。
 
连接上图中第二层和第三层之间的接口是并不针对任何存储引擎的单一API,.大概由20个基本的类似“启动事务,返回结果集”等函数组成。存储引擎并不处理SQL,相互之间也不通信,它们的任务只是简单的响应高层传来的请求。

二、存储引擎的分类

  MySQL常用的存储引擎为MyISAM、InnoDB、MEMORY(HEAP)、MERGE、BDB (BerkeleyDB)、NDB Cluster、EXAMPLE、ARCHIVE、CSV,其中InnoDB提供事务安全表,其他存储引擎都是非事务安全表。 

  1. MyISAM是MySQL的默认存储引擎。全表锁,拥有较高的执行速度,一个写请求请阻塞另外相同表格的所有读写请求,并发性能差,占用空间相对较小,mysql 5.5 及以下仅 MYISAM 支持全文索引,不支持事务。 
  2. InnoDB存储引擎:行级锁(SQL 都走索引查询),并发能力相对强,占用空间是 MYISAM 的 2.5 倍,不支持全文索引(5.6 开始支持),支持事务。但是比起MyISAM存储引擎,InnoDB写的处理效率差一些并且会占用更多的磁盘空间以保留数据和索引。 
  3. MEMORY(HEAP)存储引擎:全表锁,使用存在内存中的内容来创建表。每个MEMORY表只实际对应一个磁盘文件。MEMORY类型的表访问非常得快,因为它的数据是放在内存中的,并且默认使用HASH索引。但是一旦服务关闭,表中的数据就会丢失掉。 
  4. MERGE存储引擎:是一组MyISAM表的组合,这些MyISAM表必须结构完全相同。MERGE表本身没有数据,对MERGE类型的表进行查询、更新、删除的操作,就是对内部的MyISAM表进行的。 
  5. BDB提供事务安全。BDB被包含在为支持它的操作系统发布的MySQL-Max二进制分发版里。MySQL AB与Sleepycat紧密合作工作以保持MySQL/BDB接口的质量在高水平。即使Berkeley DB其本身是非常能经受考验和非常可靠的。MySQL接口仍然被认为是第三等质量的。
  6. NDB Cluster存储引擎,NDB Cluster是被MySQL Cluster用来实现分割到多台计算机上的表的存储引擎。它在MySQL-Max 5.1二进制分发版里提供。这个存储引擎当前只被Linux, Solaris, 和Mac OS X 支持。
  7. EXAMPLE存储引擎是一个“存根”引擎,它不做什么。你可以用这个引擎创建表,但没有数据被存储于其中或从其中检索。这个引擎的目的是服务,在MySQL源代码中的一个例子,它演示说明如何开始编写新存储引擎。同样,它的主要兴趣是对开发者。
  8. ARCHIVE存储引擎被用来无索引地,非常小地覆盖存储的大量数据。
  9. CSV存储引擎把数据以逗号分隔的格式存储在文本文件中。

三、引擎的详细介绍

(一)MyISAM

它不支持事务,也不支持外键,尤其是访问速度快,对事务完整性没有要求或者以SELECT、INSERT为主的应用基本都可以使用这个引擎来创建表。
每个MyISAM在磁盘上存储成3个文件,其中文件名和表名都相同,但是扩展名分别为:

  • .frm(存储表定义)
  • MYD(MYData,存储数据)
  • MYI(MYIndex,存储索引)

  数据文件和索引文件可以放置在不同的目录,平均分配IO,获取更快的速度。要指定数据文件和索引文件的路径,需要在创建表的时候通过DATA DIRECTORY和INDEX DIRECTORY语句指定,文件路径需要使用绝对路径。
  每个MyISAM表都有一个标志,服务器或myisamchk程序在检查MyISAM数据表时会对这个标志进行设置。MyISAM表还有一个标志用来表明该数据表在上次使用后是不是被正常的关闭了。如果服务器以为当机或崩溃,这个标志可以用来判断数据表是否需要检查和修复。如果想让这种检查自动进行,可以在启动服务器时使用--myisam-recover现象。这会让服务器在每次打开一个MyISAM数据表是自动检查数据表的标志并进行必要的修复处理。MyISAM类型的表可能会损坏,可以使用CHECK TABLE语句来检查MyISAM表的健康,并用REPAIR TABLE语句修复一个损坏到MyISAM表。
  MyISAM的表还支持3种不同的存储格式:

  • 静态(固定长度)表
  • 动态表
  • 压缩表

  其中静态表是默认的存储格式。静态表中的字段都是非变长字段,这样每个记录都是固定长度的,这种存储方式的优点是存储非常迅速,容易缓存,出现故障容易恢复;缺点是占用的空间通常比动态表多。静态表在数据存储时会根据列定义的宽度定义补足空格,但是在访问的时候并不会得到这些空格,这些空格在返回给应用之前已经去掉。同时需要注意:在某些情况下可能需要返回字段后的空格,而使用这种格式时后面到空格会被自动处理掉。
  动态表包含变长字段,记录不是固定长度的,这样存储的优点是占用空间较少,但是频繁到更新删除记录会产生碎片,需要定期执行OPTIMIZE TABLE语句或myisamchk -r命令来改善性能,并且出现故障的时候恢复相对比较困难。
  压缩表由myisamchk工具创建,占据非常小的空间,因为每条记录都是被单独压缩的,所以只有非常小的访问开支。


(二)InnoDB
  
InnoDB存储引擎提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比MyISAM的存储引擎,InnoDB写的处理效率差一些并且会占用更多的磁盘空间以保留数据和索引。
1)自动增长列:
  
InnoDB表的自动增长列可以手工插入,但是插入的如果是空或0,则实际插入到则是自动增长后到值。可以通过"ALTER TABLE...AUTO_INCREMENT=n;"语句强制设置自动增长值的起始值,默认为1,但是该强制到默认值是保存在内存中,数据库重启后该值将会丢失。可以使用LAST_INSERT_ID()查询当前线程最后插入记录使用的值。如果一次插入多条记录,那么返回的是第一条记录使用的自动增长值。
对于InnoDB表,自动增长列必须是索引。如果是组合索引,也必须是组合索引的第一列,但是对于MyISAM表,自动增长列可以是组合索引的其他列,这样插入记录后,自动增长列是按照组合索引到前面几列排序后递增的。
2)外键约束:
  
MySQL支持外键的存储引擎只有InnoDB,在创建外键的时候,父表必须有对应的索引,子表在创建外键的时候也会自动创建对应的索引。
      在创建索引的时候,可以指定在删除、更新父表时,对子表进行的相应操作,包括restrict、cascade、set null和no action。其中restrict和no action相同,是指限制在子表有关联的情况下,父表不能更新;casecade表示父表在更新或删除时,更新或者删除子表对应的记录;set null 则表示父表在更新或者删除的时候,子表对应的字段被set null。
  当某个表被其它表创建了外键参照,那么该表对应的索引或主键被禁止删除。
  可以使用set foreign_key_checks=0;临时关闭外键约束,set foreign_key_checks=1;打开约束。

(三)MEMORY(HEAP)
  
memory使用存在内存中的内容来创建表。每个MEMORY表实际对应一个磁盘文件,格式是.frm。MEMORY类型的表访问非常快,因为它到数据是放在内存中的,并且默认使用HASH索引,但是一旦服务器关闭,表中的数据就会丢失,但表还会继续存在。
      默认情况下,memory数据表使用散列索引,利用这种索引进行“相等比较”非常快,但是对“范围比较”的速度就慢多了。因此,散列索引值适合使用在"="和"<=>"的操作符中,不适合使用在"<"或">"操作符中,也同样不适合用在order by字句里。如果确实要使用"<"或">"或betwen操作符,可以使用btree索引来加快速度。
  存储在MEMORY数据表里的数据行使用的是长度不变的格式,因此加快处理速度,这意味着不能使用BLOB和TEXT这样的长度可变的数据类型。VARCHAR是一种长度可变的类型,但因为它在MySQL内部当作长度固定不变的CHAR类型,所以可以使用。

create table tab_memory engine=memory select id,name,age,addr from man order by id;

  使用USING HASH/BTREE来指定特定到索引。

create index mem_hash using hash on tab_memory(city_id);

  在启动MySQL服务的时候使用--init-file选项,把insert into...select或load data infile 这样的语句放入到这个文件中,就可以在服务启动时从持久稳固的数据源中装载表。
  服务器需要足够的内存来维持所在的在同一时间使用的MEMORY表,当不再使用MEMORY表时,要释放MEMORY表所占用的内存,应该执行DELETE FROM或truncate table或者删除整个表。
  每个MEMORY表中放置到数据量的大小,受到max_heap_table_size系统变量的约束,这个系统变量的初始值是16M,同时在创建MEMORY表时可以使用MAX_ROWS子句来指定表中的最大行数。
(四)MERGE
  
merge存储引擎是一组MyISAM表的组合,这些MyISAM表结构必须完全相同,MERGE表中并没有数据,对MERGE类型的表可以进行查询、更新、删除的操作,这些操作实际上是对内部的MyISAM表进行操作。对于对MERGE表进行的插入操作,是根据INSERT_METHOD子句定义的插入的表,可以有3个不同的值,first和last值使得插入操作被相应的作用在第一个或最后一个表上,不定义这个子句或者为NO,表示不能对这个MERGE表进行插入操作。可以对MERGE表进行drop操作,这个操作只是删除MERGE表的定义,对内部的表没有任何影响。MERGE在磁盘上保留2个以MERGE表名开头文件:.frm文件存储表的定义;.MRG文件包含组合表的信息,包括MERGE表由哪些表组成,插入数据时的依据。可以通过修改.MRG文件来修改MERGE表,但是修改后要通过flush table刷新。

create table man_all(id int,name varchar(20))engine=merge union=(man1,man2) insert_methos=last;

四、使用场景

MyISAM适合:(1)做很多count 的计算;(2)插入不频繁,查询非常频繁;(3)没有事务。

InnoDB适合:(1)可靠性要求比较高,或者要求事务;(2)表更新和查询都相当的频繁,并且表锁定的机会比较大的情况。



存储引擎各自的一些特点 

上面提到的四种存储引擎都有各自适用的环境,这取决于它们独有的一些特征。主要体现在性能、事务、并发控制、参照完整性、缓存、 故障恢复,备份及回存等几个方面


目前比较普及的存储引擎是MyISAM和InnoDB.而MyISAM又是绝大部分Web应用的首选。MyISAM与InnoDB的主要的不同点在于性能和事务控制上。

MyISAM是早期ISAM(Indexed Sequential Access Method,我现在用的MySQL5.0已经不支持ISAM了)的扩展实现,ISAM被设计为适合处理读频率远大于写频率这样一种情况,因此ISAM以及后来的MyISAM都没有考虑对事物的支持,排除了TPM,不需要事务记录,ISAM的查询效率相当可观,而且内存占用很少。MyISAM在继承了这类优点的同时,与时俱进的提供了大量实用的新特性和相关工具。例如考虑到并发控制,提供了表级锁,虽然MyISAM本身不支持容错,但可以通过myisamchk进行故障恢复。而且由于MyISAM是每张表使用各自独立的存储文件(MYD数据文件和MYI索引文件),使得备份及恢复十分方便(拷贝覆盖即可),而且还支持在线恢复。

所以如果你的应用是不需要事务,处理的只是基本的CRUD操作,那么MyISAM是不二选择

InnoDB被设计成适用于高并发读写的情况.使用MVCC(Multi-Version Concurrency Control)以及行级锁来提供遵从ACID的事务支持。InnoDB支持外键参照完整性,具备故障恢复能力。另外 InnoDB的性能其实还是不错的,特别是在处理大数据量的情况下,用官方的话说就是: InnoDB的CPU效率是其他基于磁盘的关系数据库存储引擎所不能比的。不过InnoDB的备份恢复要麻烦一点,除非你使用了4.1以后版本提供的Mulit-tablespace支持,因为InnoDB和MyISAM不同,他的数据文件并不是独立对应于每张表的。而是使用的共享表空间,简单的拷贝覆盖方法对他不适用,必须在停掉MYSQL后对进行数据恢复。使用Per-Table Tablespacesd,使其每张表对应一个独立的表空间文件,则情况要简单很多。

一般来说,如果需要事务支持,并且有较高的并发读写频率,InnoDB是不错的选择。要是并发读写频率不高的话,其实可以考虑BDB,但由于在MySQL5.1及其以后版本中,将不再提供BDB支持。这个选项也就没有了

至于Heap和BDB(Berkeley DB),相对来说,普及率不如前两种,但在有些情况下,还是挺适用的

Heap存储引擎就是将数据存储在内存中,由于没有磁盘I./O的等待,速度极快。但由于是内存存储引擎,所做的任何修改在服务器重启后都将消失。
 
Heap挺适合做测试的时候使用


BDB是MySQL第一款事务安全的存储引擎。在Berkeley DB database library的基础上建立,同样是事务安全的,但BDB的普及率显然不及InnoDB,因为大多数在MySQL中寻找支持事务的存储引擎的同时也在找支持MVCC或是行级锁定存储引擎,而BDB只支持Page-level Lock。

附上一张《High Performance MySQL》 中的各存储引擎的特性表

Attribute                                                     MyISAM                    Heap                     BDB                                          InnoDB

Transactions

No

No

Yes

Yes

Lock granularity

Table

Table

Page (8 KB)

Row

Storage

Split files

In-memory

Single file per table

Tablespace(s)

Isolation levels

None

None

Read committed

All

Portable format

Yes

N/A

No

Yes

Referential integrity

No

No

No

Yes

Primary key with data

No

No

Yes

Yes

MySQL caches data records

No

Yes

Yes

Yes

Availability

All versions

All versions

MySQL-Max

All Versions

引擎查看及修改方法(见mysql常用命令)

原文地址:https://www.cnblogs.com/duanxz/p/3709113.html